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Project Summary

Modern requirements for high performance aircraft require advanced cont,.,.d
ured flight vehicles where an increasing reliance is placed on computer cootrui 61s.
for flight performance. Such aircraft will be equipped with multiple sensors and ac-
ators and employ centralized control implemented by a high speed digital ,-rfi"
For such systems, requirements for reliable multiloop control laws which are rcbust io
a variety of changes in flight dynamics are prerequisite for successful flight op ratioa
Typical methods for the synthesis of high performance feedback control is based ,,-i
,1,minal dynamic model for the aircraft flight dynamics. Such models are suhje'-t

• arious limitations including the effect of changes in flight conditions affecting tri,i
equilibrium and consequent changes in the linear perturbation dynamics. rypiral
!rol design methods are based on the linear dynamics which will be subjctl to va;i.,,

-.urces of model uncertainty in flight control applications.
In this project we have initiated studies of the application of new and advanced

itetliods for control law synthesis for robust stabilization with respect to a combination
f both unstructured model uncertainty (arising from neglected or parasitic dynantics)

ind structured model uncertainty (arising from parametric variations which occur as
ilght conditions change.) Our efforts have focused on the chara,-terization of a class of
-itnlinear models for longitudinal dynamics of aircraft in level flight subject, to changes in
" ,atic stability. Such "relaxed stability" aircraft configurations are currently at issue in a
,ide variety of advanced designs including commercial transport and high performance

,,rcraft.
Our approach for control design is to employ H synthesis meth,,ds for :,ptql

',bust stabilization for the unstructured model uncertainty using a computationally
*,dtable approach of Glover and McFarlane. The reqnlrement f,,r svcrst :se ,,i e r,
!1ist) design to parametric uncertainty is included using a minimax optimization criteria.
nr studies have focused on a class of flight control models with physically based para
•Wtric uncertainty. For these models we have the solution of the minimax or worst case

design by a straightforward procedure which can be readily combined with the require-
,i!ents for robustness to parasitic dynamics using the closed form solution - f .he ,;i'
rh)bust stabilization method developed by Glover and McFarlane.

Robust design for stability can be combined with requirements for robust perfor-
,nance using frequency dependent constraints on the system gains. In this study ,,w
highlight the extension of the optimization-based methods for robust design with rf.
.~ect to performance and stability. Examples are incloded iliurtrate .e ll th,.,

i



Significantly, these methods allow frequency dependent weighting (i.e., "loop shaping")
to be performed without specific regard to phase and can be applied with equal ease to
both single and multi-loop design problems.

In our modeling studies we have also focused on the relation between the basic state-
ment of the control A-esign problem and the nonlinear aircraft model subject to physically
based parametric uncertainty. We have identified a relationship between the choice of
actuation and sensing (i.e., inputs and outputs), the nonlinear aircraft dynamics, and
the linear perturbation models used for control synthesis which highlights the limitations
of robust control synthesis. In particular, we identify a relationship between conditions
for the existence of static bifurcations of the equilibria and the location of transmission
zeros for the linear perturbation model. Among many questions which this analysis
can help to address we identify-under realistic scalings of a generic relaxed stability
aircraft-the limits of linear control synthesis for parametric uncertainty.

We also demonstrate the computational simplicity of the proposed method for com-
bined structured/unstructured uncertainty synthesis for the relaxed static stability air-
craft model. Comparisons are given with several recently developed methods for robust
control design for linear system models subject to various combinations of parasitic and
parametric model uicertainty.
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1. Introduction and Background

Future aerospace vehicles will be expected to perform under circumstances in which the dynamics
of these vehicles are not expected to be well known. Moreover, because they will be required to
function close to, or even beyond, open loop stability limits, it is essential that their flight control
systems will be able to cope with modeling uncertainty.

The important considerations are typically of two types, variation of modeled system parameters
and unmodeled parasitic dynamics. Some examples of the former may be found in the pitch axis
dynamics of the AFTI/F-16 [521, the longitudinal dynamics of an advanced subsonic transport
airplane [ I ], and the vertical dynamics of a helicopter [2]. Examples of the latter include elastic
structural deformations of the airframe [31 as well as sensor and actuator dynamics [4]. Parametric
variations are structured uncertainties, whereas unmodeled dynamics are unstructured and typically
associated with time scale separation or high frequency effects.

Of special concern are those situations in which the aircraft is intentionally designed to be open
loop unstable or to have markedly reduced stability margins. In such cases parameter variations
dramatically affect the dynamics of the vehicle and its flyability. It is necessary to equip such
aircraft with stability augmenting feedback controllers which shape the handling qualities and
reduce the sensitivity to parameter variations. McRuer et al [4] provide a thoughtful assessment of
the current status and deficiencies in such systems. They note the following points:

(i) Controllers tend to be of wide bandwidth, resulting in sensitivity to vehicle structural
flexure, actuator dynamics and other high frequency effects; viz. unstructured model
uncertainty.

(ii) While the feedback controller may be designed to produce desired responses to pilot
commands, responses to external (atmospheric) disturbances may be unusual and

deleterious.
(iii) The effective handling qualities introduced by augmented feedback control systems

have not been thoroughly investigated and opportunities for "task tailored dynamics"

should be exploited.

(iv) Flying qualities may deteriorate substantially near the limits
of control effectiveness.

• • .. i | I |



The fact that such compensators for control configured aircraft are of high bandwidth is repeatedly

noted in the flight control literature [31. It is also observed that many approaches to design of

stabilizing controllers, robust with respect to structured uncertainty, often lead to high gain

controllers. However, Schmitendorf [51 illustrates by example that high gain is not a necessary

element of robust control. It is clear that methods are needed which simultaneously address design

for both structured and unstructured model uncertainty.

Certain nonlinear issues are central to the design of controllers for relaxed static stability aircraft.

As already noted, augmented aircraft performance may radically diminish near limits of control

authority. Methods of control system design are needed which explicity account for control

saturation. Relaxed stability aircraft operate near equilibria with small domains of attraction and,

consequently, the ability to recover from disturbances may be dramatically improved with

nonlinear feedback laws. An example is given by Garrard and Jordan 161 in which the ability to

recover from stall is significantly improved for a fighter aircraft, operating at a high angle of attack,

by the use of a nonlinear controller. Gain scheduling in terms of measurable parameters has been

found necessary [1] to achieve desired performance over the full flight envelope when linear

feedback is employed. Exact linearization methods [48] provide means for designing nonlinear

feedback laws which satisfy these requirements. However, exact linearization is not always

compatible with control authority constraints and very little is known about the suitability of these

methods under conditions of incipient instability. Efficient methods are required for the design of

nonlinear controllers which articulate the tradeoff between performance and control restraints.

In recent years, numerous investigators have considered a variety of approaches to the

quantification of aircraft handling qualitites in a way which would be useful in analytical control

system design [71. Such efforts take on special significance for the design of augmented flight

control systems. Some general discussion is given by McRuer et al 141 and additional insights may

be found in Wilhelm and Schafranek [8]. Nevertheless, many basic questions need to be answered

if the notion of systematically 'designing in' desired flying qualities via feedback augmentation is

to become a reality. For example, common control architectures suggested for stabilizing open

loop unstable aircraft result in nonminimum phase zeros in the dynamics as seen by the pilot. This

issue has not been previously addressed although the control of nonminimum phase plants is

notoriously difficult.

In this report, we present preliminary results concerning the design of linear controllers for flight

control applications which are robust with respect to both structured and unstructured uncertainties.

Our approach centers around two elemental themes. First, we are concerned with the origins of

2



parameLric (structured) uncertainty in aircraft and in the development of an understanding of when

any such parametric variations are critical and cannot be imbedded in the unstructured uncertainty
without unacceptable conservatism. Second, we propose a method of worst case design for

dealing with combined structured and unstructured model uncertainty based on a formulation of the

H optimization problem due to McFarlane and Glover [33].

In Section 2 we review control design methods for unstructured model uncertainty, thereby

developing the required foundational background for Section 3. Section 3 provides a review of
alternative approaches to extending these methods to accommodate structured xnudWi hi,,,crtaha1,s

in combination with unstructured model uncertainties and also introduces our view of addrebsing

structured uncertainties as a minimax optimal control problem. Section 4 consists ot bciA.t,.k

design problem: robust control system design for the longitudinal dynamics of a celaxed stitic
stability aircraft. We introduce in a rudimentary way our ideas atout the Ise ol uif~aiatii ,ui)mS
as a means of articulating the fundamental limits imposed by paiametric vanatiun.N in tie dailti'S

inherently nonlinear dynamics. In this example the mininiax approach is shown to be an method of

control system design. In Section 5 we summarize our conclusions and outline promising

directions for future research.

2. Robust Control Design for Unstructured Model Uncertainty

Analysis of control system stability plays a fundamental role in design tradeoffs for feedha k
compensation. Classical design methods focus on a frequency domain description of SISO
systems to articulate the tradeoff between performance (e.g. sensitivity reduction) and stability
margins. The use of gain/phase margins provide a standard quantifiable description of these

tradeoffs directly in terms of frequency response data. From experience with classical design
methods it has become apparent that phase contributions and particularly phase errors due to

unmodeled dynamics play a significant role in the achievable performance and stability margirs. In
particular, phase errors can ultimately limit implementable gains and thus control bandwidth with
its intrinsic relation to system performance. For MIMO system design problems there is no simple

stability margin concept which can separately address the change in stability due to phase errors in

the model.

Recently, practical design for MIMO systems has focused on the natural extensions of gain margin

concepts to the multiloop case using the spectral matrix norm. Model uncertainty for a nominal
plant model G(s) may be described in an unstructured way by reference to an absolute error (or
additive perturbation, G(s)---G(s)+Aa(s)) or a relative error (or multiplicative perturbation

3



G(s)---1[+Am(s)]G(-)). The model error is described by a bounding function of an appropriate

form as:

2:12

Such me-,sures of model error are gross in the sense that they bound the model uncertainty in terms

of a conservative measure of the multiloop system gain as given by the choice of norm.

For application to design and analysis of closed loop stability with uncertain models as above we
are concerned with conditions under which the feedback will stabilize any one of all possible plant
models satisfying the above bounds. Consider the following design paradigm for unstructured

model uncertainty 115]. Assume that a nominal plant model G(s) is used to obtain a stabilizing
-1

controller K(s) so that the resulting closed loop transfer function, H s) = Gs) (I + GK(s)) , is

stable. The design is said to be robust with respect to stability if we can show that the fixed K(s)
will also stabilize 0 + Am(S) ](s) for any perturbation subject to the frequency dependent bound.

Early developments in methods for robust control design as in [15] focus on requirements for

frequency dependent shaping of the MIMO loop transmission KG(s) in terms of the above notion

of system gain; i.e., sufficient conditions for robust stability are:

(i) Am(S) is a stable transfer function and

(ii) (G~tu)2 < 1 f o r 0 <0 w < 00 in the region where lm>>l2 I m ((i)'

The interpretation of the above conditions is intuitively appealing in that it generalizes typical

engineering practice of loop shaping to multiloop designs. In application it may be constraining

for several reasons:

1) The characterization of system gain may result in a very conservative description of

model uncertainty.

2) The restriction (i) may invalidate results in certain important applications.

Initial attempts to generalize the notion of system gain and thus permit analysis and design for more

realistic problems were based on generalization of conic sector bounds for transfer functions [571.
In this line of thinking the system perturbation was assumed to have the form

A(s) = L-1(s) (s)R(s)

4



where L.,R are stable transfer functions chosen to represent die frequency dependent model

uncertainty in a somewhat more structured way and D is a stable unknown transfer function

subject to the frequency response bound

II'D(io 1 2 <1 ,2

for all o. Application of the small gain theorem [181 will justify various sufficient conditions for

robust closed loop stability depending on where we choose to represent the model uncertainty

within the closed loop model. Typical model uncertainty assumptions and corresponding

frequency dependent sufficient conditions are summarized in Table 1.

Table 1: Conditions for robust stability

Model Uncertainty Frequency dependent conditions

for robust stability

1 -neglected sensor dynamics

G -. (1+ A)G Q[1KR3(I+ i) 1 L-](Jo))2 <1, VW

2-neglected actuator dynamics

G--.)GI + A) 11Q0+ W3)'Lljo041 < 1,V

3-neglected plant modes

G----) [(G+ A) 
jj) < 1, V C

In practical design problems, the engineer may be forced to consider a variety of model erici

sources in combination, and in many cases, certain forms of model errors may be more significan

in certain loops. This form of structured uncertainty was considered by Doyle et ai tl6j. IL

suggested that plant model uncertainty could be represented in a general way by isolating the model

uncertainty in an additional external feedback loop as shown in Figure 1. Thus the model

uncertainty is viewed as a parasitic feedback from certain error outputs e to certain disturban,-,

inputs w. In this case if we take the transfer function model P, representing the iKnown dynamni.,,

i.i the form,

5



Y Pyw Pyu u1

the assumed form of the uncertain plant is that of a Linear Fractional Transformation (LFT);-1
GA) = Pyu + PywAO - PewA) P eu

In this form sufficient conditions for robust stability can be obtained by direct application of the

small gain theorem (using possible frequency dependent weighting functions L,R) in terms of an

LFT of P and K in the form;

kP ew+ PeuK(I - PA P ]L - 112 < 1

for all real frequencies.

disturbances w Z error outputs
P

actuator
inputs measurements

Figure 1: The general structure of the robust control problem.

Then a natural characterization of the significance of loop dependent modeling errors is to consider

the parasitic dynamic model to be structured in the sense that the transfer function has the form

A=diag(Aj,...,Am).

The association be.. .=i the spectral matrix norm (understood as a matrix norm subordinate to the

Euclidean vector nor - ;,nite dimensions) and the maximum singular value makes contact with

the spectral prop.. rtes of singular value decomposition [18]. Following this line of reasoning,

Doyle postulated the existence of a structured singular value (SSV), defined with respect to
particular block diagonal structure of the loop parasitics. The definition of the SSV proposed by

6



Doyle was chosen to emulate the spectral properties of singular values. In particular, the fact that

the maximum (resp. minimum) singular values are related to the spectral matrix nonr as;

craA = , 1411 1YJAI} = -11[ '_
2 M1 2

for A a nonsingular matrix. Thus, the minimum and maximum singular values are useful in

bounding the spectrum of matrices under perturbations. Considerable effort has been expended in

the search for computationally feasible algorithms for estimating the SSV [58], however, as of this

writing only fairly simple structures can be computed with any accuracy.

An important feature for robust control design methods is the incorporation of frequency shaping

requirements given by any of the various frequency dependent conditions for robust stability

described above. Such considerations have been implicit in design methods dating back to early

1970's [281. One popular method provides an extension to the state space constructions of Linear
Quadratic Gaussian (LQG) optimal control problem by the incorporation of Loop Transfer

Recovery (LTR) [19]. We remark that the limitations described above all apply to LQGfLTR type

methods. The popularity of this method derives from the generality of approach to MIMO design

and the computational support available from various standard numerical algorithms available for

its implementation.

In the Phase I study we have investigated application of several new results in analysis and design

of robust control systems which address the above limitations. First, we employ a new type of

stability margin for multiloop feedback which quantifies closed loop internal stability in a perfectly

general way and embraces possibly unstable model uncertainty. The stability margin can be

alternately described from a geometric viewpoint or as the supremum over frequency of the gain of

a transfer function specially constructed from normalized coprime factorizations for the plant and

the compensator. Furthermore, recent results of Glover and McFarlane provide a synthesis

procedure for obtaining a controller which achieves (if possible) a prespecified stability margin of

this type. Their methods provide a simple computational scheme for determining the maximum

possible stability margin attainable for a given plant model. To illustrate the application of these

results we have focused on a physically motivated flight control design example which is discussed

in the next section.

2.1. Geometric Stability Margin and Normalized Coprime Factorization

The geometric view of feedback considers the general MIMO feedback equations with G(s) a pxm

plant transfer function and K(s) mxp;

7



y (s) = G(s)u (s)
u(s) = - K(s) y(s) (2.1)

in the form

[I m K(s) 1 (U(S)_
Gs) -4I J(~Y(S) -(2.1 a)

In this form we focus attention on the relative orientation of two abstract objects;

Gs=ker[G(s),Ip], Ks=ker[Ilm,K(s)], which can be viewed for any complex s as a pair of
subspaces in a p+m dimensional complex vector space of values of inputs and outputs. Moreover,
a number s for which these subspaces intersect nontrivially; i.e. dim(GsnrKs)>O is a closed loop

pole. Following this line of thinking Brockett and Byrnes [21] describe a Nyquist stability

criterion for the general pm case based on frequency response data. Their result---which is

somewhat abstract---provides an encirclement condition on an abstract space called the Grassman
manifold. Despite the abstract nature of the resulting stability test it does retain several essential

features of the popular single loop test developed by Nyquist. In particular, it identifies a Nyquist
contour FG for the plant as the image of the imaginary axis s=jo under the map ker[G(s),-Ip] and a

separate object, IrK, obtained from the imaginary frequency response of ker[lm,K(s)].

In [22] Bennett and Baras describe a geometric stability margin based on an angle measure of the
distance between the intersection of the respective Nyquist contours, rG and rK. Their measure is

described in geometric terms but is meant to extend to the general MIMO feedback case the natural
practical notion of stability margin for the SISO case as;

mninjg(S) + s)

The simplest way to motivate the definition of the geometric stability margin is to recall the

definition of the canonical or principal angles between a pair of subspaces.

Definition [241: The principal angles Ok= (0, 1 between a pair of complex subspaces,X,

Y, under the assumptions, dim X =p, dim Y=m and p~m, are given recursively for
k=l,2,...,p as,

COSO =maxmaxu*v=ukv
UEX VY kk

14I 2=1 H 2=

subject to the constraints

8



u*.u =O, v'v = 0
i I

for j=l,...,k-1. Then the principal vectors for the pair of subspaces are

{U1,...,Up,V1....,Vm).

Canonical angle analysis has found application in a number of areas including the computation of

statistical correlations. Numerical algorithms for the computation of canonical angles are largely

based on singular value decompostion [24]. In [24] Bjorck and Golub show that the computations

can be implemented by obtaining a pair of matrices QX' QV of dimension nXp, nXm,

respectively such that Qx I p, Qy Q~ = m and Qx, Qy are a basis for X (resp. Y)---

using, for example, Gram-Schmidt procedure. Then the SVD of the product;

has singular values as

I = diag{al, ..,ap} =cos 0

which if ordered as a1  ... a p then the principal angles are obtained from

0 =diag{ 01,..., p}

with 0 -" -< 0 p.

Finally, in [22] Bennett and Baras show that via an alternate form of the above principal angle

computation one can associate a certain minimum singular value with a measure of how nearly two

subspaces intersect in a nontrivial way. In this case we obtain an nX(n-p) matrix O x with

orthonormal columns whose span is the orthogonal complement of X. Then the SVD of th.

product,

Qx 0O" = 11X A YY

has singular values related to the canonical angles as

A = sin0.

9



Thus the minimum singular value 0 < XI < 1 is nonnegative, real number which indicates how
nearly the pair of subspaces intersect. Let 7 = X (X , Y ), which we refer to as the minimum gap.

Definition: The geometric stability margin for the closed loop system is given as

0 m= m i n -f(ris, Es)
s s=j (2.2)

In [23] we show that the computational problem of orthonormalization can be replaced by the
introduction of a pair of normalized coprime factors for G(s) and K(s).

Definition: A pxm transfer function G(s) has a stable normalized right (resp. left) coprime

factorization G=N M-1 (resp. G=Ml-41 ) if N,M (resp. lM,K4) are stable transfer function,
which satisfy,

N*M+M*MIm (resp. &*&+94*FA)=Ip). (2.3)

Moreover, it is shown in [25] that every pxm transfer function has a Normalized Right (resp. Left)

Coprime Factorization (NRCF or NLCF) which is unique up to a unitary change of basis in input

space Cm (resp. output space Cr).

We can then show 123] that the geometric stability margin for the general MIMO case can be
computed as follows. Obtain the NLCF of the plant G=I9-l!4 and the NRCF of the compensator

K = PQ -1. Then the geometric stability margin can be given as

0 sm= min amln{(S)}

S =jC (2.4)

where
(= &P + IMQ (2.5)

To see the significance of this construction consider that the normalization processes obtains a
frequency dependent change of basis in the p-dimensional space of outputs such that the matrices

has orthnormal columns and
[G,Ip] =I%-[R ,IQ]

has orthonormal rows.

10



An alternative expression for plant uncertainty advocated by Vidyasagar [25-27] in terms of
additive stable perturbations to the factors in a coprime factorization of the plant has certain

advantages in analysis of feedback systems. In recent work Glover and McFarlane 1311 also

considered this class of unstructured perturbations and obtained a surprisingly explicit and
intuitively appealing solution to the corresponding robust stabilization problem when the coprime

factorization is normalized. In particular, they considered the problem of stabilization of a nominal

plant transfer function G(s) and a family of transfer functions given in terms of its NLCP

G=94I-I&,

given as

Ge= {(1I+AM)- I (&+AN): ll[M1rMlR o < E} (2.6)

where 11.100 is the -I norm of the transfer function given as

I13(s)ll =SUp Y mA s)}
s=j W

and AM , AN are stable unknown, transfer functions which represent the uncertainty in the

nominal plant model. It was demonstrated by Vidyasagar [25-271 that this description of plant

uncertainty has advantages over additive or multiplicative unstructured uncertainty models. For
example, the number of unstable poles may change as the plant is perturbed. Figure 2 illustrates

the class of systems described by perturbations of normalized coprime factors.

Figure 2: Perturbation of NCPF

It is now apparent the role of coprime factorization originally conceived in the work of Youla,

Rosenbrock, and others was somewhat constraining. The goal of much of this reaserch was to

extend the obvious constructions for rational scalar transfer functions of factorization in terms of
numerator and denominator polynomials to the required matrix constructions for multiloop

11



systems. More recently, connections with state space constructions have become evident by
introducing an alternate viewpoint [25]. Instead, we think of coprime factorization over an

alternate algebraic ring of rational tranfer functions whose poles are contained in some arbitrary left
half plane within C. Since in most cases we are concerned with asymptotic stability, it suffices to
consider coprime factorizations over 9H *, the space of all rational functions of the Laplace

variable s analytic for Re s>O. Then a state--space construction for the normalized left (resp. right)
coprime factorizations over XH,* can be obtained in terms of the solution to the Control (resp.

Filter) Algebraic Riccati Equation:

ATX+ XA - XBBTX+CT C=O (CARE)
T T TAY+ yA _ yCCY+BB =0 (FARE)

Specifically, let G(s) be realized by a linear state space system;

(t) = A (t) + Bu(t)
z(t) = C(t)

so that G(s) = Cis I -A] -B with (A,B,C) a minimal realization. Then the respective left

normalized coprime factors can be shown to be realized as

R(s) = C[sI-A0]-1 B (2.7a)

FA(s) = I-C[sI-A0]- 1H (2.7b)

where

H=-YCT, A 0 =A +HC (2.8)

The geometric stability margin provides a numerically attractive measure of closed loop stability
which includes the class of perturbations just described. It will recognize possible pole/zero

cancellations which might occur in the formation of any variation of the return difference matrices
and it provides a characterization of plant neighborhoods for robust analysis as above in terms of
metric specifically designed for the stability margin for multiloop stability directly in terms of the

generalized Nyquist criterion [21].

2.2. Design Methods for Optimal MIMO Stability Margins
The primary reason for the introduction of coprime factorization by Youla et al [281 was to facilitate

analytic optimization for the resolution of engineering tradeoffs in design. The coprime

factorization permits optimization to be carried out without regard for stability of the closed loop
system. This fact follows from the following well known lemma.

12



Lemma: For each real rational G(s) there exists left and right coprime factorizations;

G=NM-I = M- I , each contained in 9W., and functions V,U,V, Oe 9ZHoo such that

-N S4 N V 0 1 29

With the above notation the Youla parametrization provides a complete parametric description of all

stabilizing compensators for a given plant transfer function G(s).

Lemma: Any compensator transfer function K(s) which stabilizes the plant G(s) in closed

loop can be factored as

K = (U+MQ)(V+NQ)-l = (1V+RQ)- 1 (C+MQ) (2.10)

for some Qe 9M..

This has been called the Q-parametrization by Desoer et al [60]. It is significant to recognize that
this parametrization guarantees that the closed loop system (see Figure 2) is internally stable; i.e.

the composite transfer function satisfies,

0 -1 -11 9M.

(m -3) -G (0m-M) -

The focus of the current phase 1 project is to investigate the application of some recent results of

K. Glover and D. McFarlane [31-33] on robust stabilization. In the next few paragraphs we

summarize the basis for their results.

Defintion: A feedback system consisting of plant transfer function G(s) and compensator

K(s) is robustly stable with respect to the margin e (or e-robustly stable) if and only if the

feedback system of (2.1) K, GF is internally stable for any Gp ( GE (as given in (2.6)).

The symbol e represents a stability margin for the system in the sense that it indicates the 'size' of

tolerable perturbations internal to the plant (in terms of the coprime factorization). (As we wilj

demonstrate shortly, this stability margin is identical to the geometric stability !iiarg'n d:rl i.

above.) The robust design problem is to stabilize not only the nominal plant, G, but the family of

13



perturbed plants defined in (2.6) using a single feedback controller K(s) (see Figure). Their first

result provides necessary and sufficient conditions for robust stabilization of a given plant.

Lemma: The feedback system with plant G=MI4- is s-robustly stabilizable by some

compensator K if and only if

K(s)f 9II L (I-GK)lM .I (211

This is stated in the form of an H-O optimization problem which could be solved by the standard

iterative procedures outlined in Francis [20]. To follow this approach one could first proceed by

recating the optimization problem as a "standard problem". This is illustrated in Figure 3.

w e

U

y

Figure 3: Robust Stabilization Problem in Standard Form

This can be seen by comparing the standard problem of Figure 1 where in this case we take

p= [M MA N

M- ' M-A N (2.12)

Then the standard H problem is to minimize the H' norm of the transfer function from w to e;
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P +P,,K4-~jjK'P,- GK)-l M- 1 -

P1 1 + 1 2 K 0 P 2 M)P2 1 =[( - 1Mj-1 (2.13)

which demonstrats the interpretation displayed in Figure 3.

However, by using normalized coprime factorizations, Glover and McFarlane show that the

iterative procedures can be avoided altogether, and an exact solution can be obtained very simply.

The key idea is to combine the Youla parameterization of stabilizing controllers described above

together with interpolation results of Nehari and Glover for the computation of the Hankel norm.

In particular, they show that the plant G is e-robusdy stabilizable if and only if

F2< I-II 1 I2 (2.14)

where the Hankel norm of a stable, proper system G(s)=C[sI-A]-IB is given as

I13(s)HH = xfr V= /mjo (2.15)

i-e., the maximum singular value of the associated Hankel operator,

(Ff)(t) = fCeAO+t)Bv(r)dt
o (2.16)

It is also shown in [301 that the Hankel norm can be obtained from the state space realization of the

stable system via the solutions of the pair of associated Lyapunov equations;

AP+ PAt +BBt =0

A tQ+ QA + CtC = 0, (2.17)

as shown above.

Using these constructions Glover and McFarlane show that the optimal stability margin for

G(s)=C[sI-A]-1B given by the minimum achievable co in (2.11) can be directly obtained from X,

Z>O, the positive definite solutions of the pair of Riccati equations (CARE) and (FARE) as1
0o ji +X~M,,00x (2.18)

Significantly, Glover and McFarlane also provide formulae for the characterization of all

controllers which achieve e-robust stabilization and from the previous discussion such level is

achievable only if c-0o, with F0 the optimal stability margin obtained from (2.14). Formulae for
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the desired e-robust compensators are given directly in terms of state space realizations which

facilitates computer based computation. Details are given in [32]. It is also potentially important
to recognize the flexibility available in this characterization which permits consideration for various

additional design tradeoffs. In this study we have focused on the simplest form for realizing an e-

robust compensator. This is summarized as follows.

Theorem: A compensator K(s) which achieves the specified stability margin e, 0- -!e,0, is

obtained in the form -1

K(S) = C sI- AkJ Bk, (2.19)

where the state space realization is given by the matrices

Ak = Ac+y2(W) - 1 ZCt C

Bk = Y2(W')-lZC ,

Ck = BtX, (2.20)

and where the matrix terms are
Ac = A+ BF,

F=- BtX
W = XZ - g, (2.21)

and the scalar terms are

Y =y " =  -(2.22)

The following demonstrates the connection between the geometric stability margin and the e

stability margin used abcve.

Claim: The geometric stability margin is identical with the e stability margin introduced by

Glover and McFarlane in the context of the robust stabilization problem.

Prof: To see this consider a plant transfer function together with NLCP factorization G = M N
over 9R H '. Then for some K(s) which stabilizes G(s) the achieved stability margin P is defined

in terms of the H norm as,

16



|[J (I P K -

UP Oma ]' 01 1)
=sup ore ] 0p - (3K) (s

S=j-1

Let K = PQ be NRCP factorization of the compensator over 91 H o. Then iz is clear that

and since [ is an inner function the resulting norm can be obtained as

or equivalently,
,= i n f cymin f ((s) I

S =j(o

where

(S) = [MQ- NP](s)

Thus we conclude that C = 0 sin.

The significance of the geometric stability margin is to lend an insight relating the classical Nyquist
analysis to the MIMO setting and to clarify the role of the normalization in geometric terms. Thus
it is clear from the definition of the geometric stability margin that Osm is the sine of the minimum
principal angle between a certain pair of subspaces and therefore 0.9"l. We suspect that the role

of the geometric picture may offer new insights in terms of frequency shaping design for combined
stability and performance robustness. In the Phase 1 study we have highlighted these features
briefly as part of the flight control benchmark.

2.3. Design Methods for combined performance and stability robustness

Loop shaping is a well established design methodology for control design for MIMO systems with

LQG/LTR being one of the better developed techniques. An advantage of loop shaping is that a
suitable loop shape for both stability and performance robustness can often be chosen---at least in
the case of unstructured model uncertainty---with relative ease. The motivation for loop shaping
comes from classical frequency domain design for SISO systems where lead/lag circuits as well as
PID circuits provide the component parts for attaining the desired loop shapes and stability margins

guide the designer in quantitative choices. For example, following SISO design we expect that
low frequency gains should be sufficiently high for typical performance requirements of good

tracking at steady state, while high frequency gain should be rapidly attenuated in regions where
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the model dynamics may neglect significant parasitics. The achievable roll off in SISO systems is
related to phase in a direct way as described by Bode. For MIMO systems it is in general also
difficult to guarantee good robustness in the gain cross over region---particularly for nonminimum
phase plants.

A new method of loop shaping has been proposed by McFarlane and Glover [331 and has been
examined for the flight control design considered in this study. In this approach, the results of the
problem of optimal robust stabilization of the normalized coprime factors (i.e., maximization of the

geometric stability margin) are used as a basis for design. As an example consider the robust
stabilization of a simple SISO plant and choose arbitrary stable NLCP factors;

Cqs) = S -I- = ,

and take as compensator
K(s) = - k.

The class of systems that can be stabilized by K(s) can be described as

-1
G,(s) = (M+ AM) (N+ AN)

with [A V ANII < 0  s q where " sm( ' is the geometric stability margin which can be

computed as

0 sm(G,K) =1/ 0[,fl(GO -1M1

In this case we can obtain

(1+k -2) - 1/ 2 , for k<10smO/S,-k)= -/
(1+k) , for k l

Hence the stability margin is poor if either k<<l or k>>1 and, in fact, optimal if k=l. In the

former case the closed loop pole is moved to -k and hence a small change in the open loop pole---
say to +2k---wotld not be stabilized by the fixed feedback. In the latter case, the gain is high so
that phase errors could cause loss of stability. Note that in both cases the interpretation just

described will depend on several factors, including, for example, the scaling of time, inputs, and
outputs. Note also that the loop shape, /1w, has been substantially altered in either case if k<<l or

k>> .
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The method proposed in 1331 and implemented in this study is as follows:

(i) Loop shaping: Choose weighting functions Wi and W0 such that the weighted or

shaped plantGs=WOGWi has the desired loop shape.

(ii) Robust Stabilization: Compute the optimal stability margin Emaxs.(GsK)

as in (2.18). If eO(Gs)<<l, return to (i), otherwise compute a controller Ks which

achieves the maximal stability margin for the weighted plant using (2.19)--(2.22).

(iii) Control Realization: The final controller is realized by K=WiKsW 0 .

The design method proposed has several useful and assured properties. For example, the direct

optimization of the stability margin assures the geometric stability margin is achieved or execeeded

at all frequencies. This feature is demonstrated in the examples considered in this report and

provides a graphic demonstration of the broadband matching properties of HI optimization.

Second, in the high gain region the controller Ks computed for the shaped plant reduces the loop
gains (i.e. min/max singular values) by a factor of at most E 0 (G) . Third, in the low gain region

the controller Ks can increase the loop gains by at most a factor of l/EO(Gs) Moreover, if

,o(Gs)<<l, then Osm!0(Gs)<<l, for any stabilizing controller. Hence, in this case the loop shape

is not compatible with the robust stabilization requirement and any controller which achie-ves it wili

have a poor stability margin in the gain cross over region, or undesirable decrease in the low

frequency gain (i.e., loos of perfromance), or undesirable increase in the high frequency gain ki.e.,

loss of stability margin).

We therefore interpret the optimal stability margin as an indicator or engineering figure of merit for

the compatibility of the loop shaping proposed in step (i). The resulting performance will be

robust to any small changes in plant parameters which can be absorbed into the unstructured model

uncertainty in terms of the perturbations to the NLCP factors. However, large changes in real

parameters arising from changes in the system operating point may be difficult if not impossible to

embed in perturbations to the NLCP factors of the plant without making the design overly

conservative. An example of this fact is discussed in the flight control benchmark considered in a

later section.

3. Worst Case Control Design for Combined Structured-Unstructured
Model Uncertainty
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In Figure 3.1 we display an uncertain system with feedback controller, K. A(s) is the plant model

uncertainty and it is desired that the transfer function from w to z remain bounded less than 1 for all
A such that IA II, < 1 The bound can be rescaled to any value and this problem can include

both performance and stability robustness.

A sufficient condition for robust performance is that the closed-loop transfer function from
[t, wt t ]t

= [v1, W ] to F [e Z t have an -0r norm less than 1. This condition is not conservative

if robust stability or nominal performance alone are considered, but will become conservative

when robust performance is required [16]. H * optimization is an effective tool which can be
applied to such problems to maximize the robustness. Additionally, the computational
requirements are now understood [35]. The resulting approach is computationally quite tractable
and provides controllers with degree no greater than the degree of the model P(s). However, it
does not address structured uncertainty.

V E e

w z
--- P (S)

u y

Figure 3.1: Uncertain Structure of Feedback Control Problem.

3.1. Summary of Some Existing Methods for Design

3.1.1. Structured Singular Values
The robust performance problem of Fig. 3.1 for JIA 00 < 1 and subject to a specific block
diagonal structure for A is considered by Doyle in terms of the 'structured singular value' analysis.

For a large number of blocks this problem is not tractable, but a good approximation can be
obtained by introducing diagonal 'D-scales' on the inputs v and outputs z. These D-scales are
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chosen to be functions of frequency that minimize the Ht norm of the scaled transfer function

W -' Z. This can provide an effective analysis tool.

The design problem is more difficult. It can be addressed by alternately ininimizing over the D-

scales and then over the stabilizing controllers K until convergence. There are few theoretical

results to justify this procedure. Real parametric variation can (in principle) alao be addressed

using a nontrivial modification of the method [361. Again, this is an analysis tool and

computationally more involved than the case of complex (i.e. frequency dependent) structured

uncertainties.

3.1.2. Methods Based on Kharitonov's Theorem

Kharitonov's theorem provides a remarkably efficient test for the stability of a class of systems

when the closed loop characteristic polynomial can be written as a polynomial with coefficients---

each of which lies in an independent interval of the parameter space. This result has lead to a

variety of methods for analysis of interval rr atrices whose elements are parameters contained in

known intervals. However, for more general structures the resulting tests become intractable

becouse of the size of the test matrices involved. Such tests are based on determinantal inequalities

and involve purely algebraic computations whose complexity leads to algorithms which are NP-

complete (in the jargon of computer science.)

3.1.3. Quadratic Stabilization

The work of Peterson and Hollot [37] on quadratic stabilization of uncertain systems considers

norm-bounded but possibly time-varying perturbations of a nominal system. Furthermore, they

employ a strong stability condition which requires the existence of a quadratic Lyapunov function.

It can be shown that this version of stability is identical to requiring an lI4° norm bound on the

transfer function from the outputs of the perturbations back to the corresponding inputs (as in Fig

3.1). Robust stability then follows from a small gain argument. Results using this procedure can

therefore be interpreted in an HOO robust stabilization/performance framework.

3.1.4. Combined LQG-H- Design

Bernstein and Haddad [381 consider a combined LQG and H-i* control design. Their introduction

suggest that they are minimizing the H2 norm subject to a constraint on the -°norm. This is in

fact not the case as a careful examination of the paper reveals. Instead they minimize upperbounds

rather than the actual norms as claimed. In many circumstances this will result in a good

approximation to the original problem. Indeed, in the case when the H' constraint and the H2

criterion are both applied to the same closed loop transfer function, then (as shown by Mustafa

1391) their criterion is identical to the entropy maximization criterion in H1' design as considered by
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Mustafa and Glover [40] (see also appendix). The entropy criterion for a closed loop transfer

function, H(s), is

I(H,y) f log [det{ 1y 2H(jo)H*(j(0)} ]dco (3.1)

Clearly, it is required that IIHI* y for I(H,y) to be well-defined and it is easily shown that -JIy)

is an upper bound on the H2 norm.

The major contribution of these papers is to allow different transfer functions in the H2 and H

criteria and can therefore address the problem of reduced order compensator design, the main

disadvantage being the substantial computational difficulty involved in solving the resulting

coupled Riccati equations.

In [41] Yeh et al consider the problem of designing controllers for the combination of both real

parametric uncertainty and unmodeled dynamics. The approach utilizes a combination of the

methods of Bernstein and Haddad together with the results of Peterson and Hollot. However,

since both approachs employ upper bounds one can expect the results to be conservative.

To be specific consider the closed loop system

= (A + AA)x + Bw
z = Cx (3.2)

where
P

AA =IDiAiE., GmaJAi) < 1.
i-1 (3.3)

This system can be rewritten in the form of Figure 3.1 by defining,

e. =E.x, v. =A .e. (34)

to give,
P

=Ax + YD i v. + Bw
i=1 (3.5)

The corresponding Riccati equation employed in [41] is then

0 = AQ+ QAt + y-2QCtcQ + Q + BBt (3.6)
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where

"= I(3.7)

However, the existence of Q. to satisfy (3.7) is precisely a test on the HO" norm ot the transfer
function from w to z in Fig. 3.1. Hence the performance will be robust to the uncertainty as
claimed but will also be robust to the unstructured uncertainty.

This approach gives a viable design technique for structured and unstructured uncertainty,

however, it will be conservative because it essentially (although not obviously) embeds the
structured uncertainty into a larger unstructured uncertainty perturbation (e.g. oiock of A). in iacL
if the coprime factors Mi and Ni are optimally scaled with frequen.y, then thi h L,,.Le

identical to the structured singular values.

3.2. Worst Case Design as Minimax Optimal Control Problem
The geometric stability margin Osm(Gs,K) has been shown to be a suitable design indicator and

engineering figure-of-merit for both performance and stability robustness of closed loop control
systems. However, the control design procedure suggested above will be conservative if
structured uncertainty due to real parametric variation is present in the model. Instead, in this
section, we take the plant model to be of the form Got(s) = C(s,(x) , a function of a real parameter

vector ax. If we assume ot E~,~ k a compact set in the k-dimensional real vector space then
the optimal "robust" design solution for stability is to find a compensator &s wLica 6taoiliz.s dc
nominal plant G0 (s) and maximizes the worst case stability margin attained over the .:

cc E . Here let (a,K)=l/Osm(Goa,K) then we wish to find K which solves;

infsup y(a, K)
K aEo (3.8)

'I o see formally that this is appropriate for combined structured and unstructured uncertainty

consider the problem as follows: given the design model

(plant) y =G(a)u

(comp) u =Ky

with u an rn-vector of plant inputs and y a p-vector of plant outputs. See Figure 3.2. The
structured plant uncertainty is characterized by a I-vector of parameters, ao (6, with 9 .
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G(sc~)

U Y

K

Figure 3.2: Robust Control Design Model for Mixed Uncertainty

Problem of Robust Stabilization: Find K(s) mXp (controller) fixed wrt. x which stabilizes a class

of plants G(a) given by:
(uc) Unstructured uncertainty conditions: for each cm 8, G = M91-lN is taken to be a

normalized left coprime factorization (NLCP); i.e., (N,M) are left coprime and

M19 *N * =1I
Ge G e = { (1+ AM)-I (N + AN) :11 [AM, AN] II *< 8} (3.9)

(sc) structured uncertainty conditions:
Ge Go, = ( G(s; ) : cca 0 ), 9t1 ;8. (3.10)

For the mixed (or combined) uncertainty conditions we simply mean
G Ge r Ga.

A closely related but more tractable problem is the maximin (or dual) version of (3.8);

sup inf(,K) fys--G= 1

0  (3.11)

whose solution is now feasible because of the results of Glover and McFarlane [32] as described in
Section 2.2 of this report. These results provide a simple and computationally straightforward
solution of the first level optimization problem; i.e., the optimal stability margin can be computed
for any choice of a. The use of minimax design for parametric model uncertainty has been

considered previously in only a few cases which have been reported in the open literature.
Examples available provide an insufficient basis for theoretical extension of the results to large,
complex problems but do suggest the practicality for relatively simple systems with small number

of parameters [43].

Sufficient conditions for the minimax and maximin problems to have the same saddle point
solution include the function y((x, K) being convex in K and concave in aX E 0. It is not

24



apparent that either of these conditions are likely to be satisfied globally. It can however, be

shown that if we employ the Youla parametrization for the choice of K (i.e., to find a single

controller for all a e E ) then the objective will be convex in the Q parameter [201. The behavior

with respect to Q E E is unlikely to be concave except locally. At a saddle point it can be checked

whether 0sm(Ga, K) is locally convex with respect to . To do this we find the relation Ko((x)

by the minimization in (3.11); i.e., the optimal controller depending on the unknown parameters.
Then at the point (ao, K we check that 0sm(Gx, K°) is minimized with respect to axe .

Furthermore, if we use the suggested compensator Ko then we have the guaranteed bound

i n f supesm(Ga, K) 0sm(Ga I Ko)
K cfe - 3.12)

and we can evaluate the achieved performance

supsm(G(, Ko )
M 8O (3.13)

to establish the sadd'- point equivalence by comparison with the lower bound (3.12). TYh:

combination of the steps (3.11) and (3.13) will in general require extensive evaluations of the

stability margins at various candidates (K,a) which may create extensive computational burden

However, as illustrated in the benchmark example, several significant flight cortrol design issues

can be addressed using this approach. We emphasize also that since no bounding approximation.

are used, the structure of the parametric uncertainty is retained in an essential way in the design

process. It is also apparent that the worst case design obtained can be directly understood trom the

model assumptions and the objective of a robust solution [421.

The ninimax and maximin problems will also be equivalent in the case when

Sup0sm(Ga, K) = e(Gac ,K)
8E 8 for all K; (3.14)

ie. when the worst case set of parameters is independent of the choice of controller. This is often

the case, for example, when the extreme values of the parameter correspond to maximum phase lag
or ultimate instability (see example in the next section).

4. Control Design Benchmark-Robust Control for Aircraft with
Relaxed Static Stability

4.1. Longitudinal Dynamics
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We summarize the basic equations of motion which govern the longitudinal dynamics of an
aircraft. Further details may be found in [49-52]. Figure 4.1 identifies the body axes (X-Z)1, the
velocity V, the body attitude 0, the flight path angle y, the angle of attack x---0+y, and the principle

forces acting on the airframe. These include lift, drag, thrust and weight.

Lw

Lt

T

mg

Figure 4.1. Principle Longitudinal Parameters

The basic equations of motion include: linear momentum balance in the X direction, linear
momentum balance in the Z direction and angular momentum balance.

m(u+w) = -mgsin0 + Lwsinct + Ltsinat + T - Dcosz (4.1 a)

m(v -ub) = mgcos0 - Lwcosa - Ltcostt - Dsinct (4. lb)
10 = Mw + wLwcosct - ltLtcosat - c (4. lc)

where at is the tail angle of attack and is related to the angle of attack a, pitch rate 0, tail angle it,
downwash angle F and the elevator deflection angle Se via the relation

at = a + it - e + be + (ltV)6

We also have

lw + It = 1*

1Thc X axis is usually aligned so that ct=O corresponds to zcro lift.
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The lift and drag forces depend on the velocity V, air density p and surface area S via the relations

L = CL()-pV2S (4.? a)

Dr CD(ctC-2pV2S k4.2 b)

M = CM(ct)2pV 2S (4.2;)

In view of the dependence of the forces and moments on V, (x it is convenient to replace u, w in

(4. 1) by V, ax using the transformation relations

w Vsinct (4.3a)

u = Vcosct (4.3b)

Thus, we obtain

m(cosaV -Vsinaxa +Vsina0) = -mgsin0 + Lwsina + Ltsinat + T - Dcosax (4.4a)

m(sincV+Vcosaai -Vcos(xb) = mgcosO - Lwcosa - Ltcosat- Dsin(x (4.4b)

16 = Mw + lwLwcosa - lItLtcosat - cb (4.4c(

Notice that equations (4.4) can be organized in the vector form

Lmcos°x -mVsina mVsinct 0
v

msina mVcosot -mVcosat 0 d a

0 0 1 0 1d
0 0 0 _

-mgsin0 + Lwsina + Ltsinat + T - Dcosa1

mgcos0 - Lwcosax - Ltcosat - Dsina
(4.5)

Mw + lwLwcosa - ltLtcosAt - cO

4.1.1 Nondimensional Equations of Motion
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Let us introduce a normalized velocity by identifying a nominal velocity (for example, the

maximum cruise velocity) V0 and define

o:=(vI~o)

and also the nondimensional quantities

K= (WI*)
Aw=(Lw/mg), At: (Lt/mg), A: (D/mg), rl: (T/mg), Y-: (Mw/l*mg)

Equation (4.5) can now be written

cosct -usinL usinax 01

sina ucosa -ucosa 0 d aK 0 1 0j dt o
0 0 0 1 L(vo/g)b

-sine + Awsina + Atsinat + I- - Acoscz

cosO - Awcosot - Atcosczt - Asinax

V0  (Vo/g)

(V2 l*/gr2)(Zw + 1cAwcosa - (1-ic)Atcosat) - (cVO/mgr 2 )(VO/g)6

Now, let us introduce a nondimensional time, c, and pitch rate, q,

T =(g/vo)t, q :=(VO/g)6

in order to obtain the nondimensional equations

cosa -'usina 'usina 0 1[
0s~ 0 1 0 d'r [0

0 0 0 10j L
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-sine + Awsina + Atsinxtt + 17 - Acosa

cosO - Awcosot - Atcosoct - Asina

q (4.6)
Vo21*  0

g 2 { w + KcAwcosa - (1-i)Atcosatt - 2- q
gr2 {XW 

qgr

4.1.2 A Fictitious Aircraft

Level flight corresponds to y = 0. We assume that the longitudinal body reterence axis

corresponds to the wing zero lift line and that level flight at nominal conditions (VO,po)

corresponds to cc,0 = oao. In this case, the normalized lift forces take the form

Aw = fw(a)pu)2 , At = ft(att)p1j 2, with fw(0) = 0, ft(0) = 0, -p = (p/po) (4.7)

The normalized drag force is assumed to be of the form

A = (a + b[fw(c)12)p1)2 (4.8)

and the moment is of the form

yw = Gw(0L)Pu 2  (4.9)

In the following discussion, numerical computations and examples will be based on the following

model aircraft characteristics unless otherwise noted.

p 1, e = 0, ow(x) =0, a = .1, b =.1 (4.1Oa)

fw (tZ - 2 .0 8(ct - a )3 } ft = r ((a O0e)-3(a O+8e) 3  o = .05, e .= 1 (4. 10b)

Vo21* = 3,c0 = 8 (4. 1Oc)

gr2 mgr2

4.1.3 Static and Dynamic Stability

Equation (4.6) can be written

J(x)x = f(x,u,p.) (4.11)
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where x denotes the state vector, u denotes the control variables and t denotes a designated set of

system parameters. A triple (x*,u*,p.*) is an equilibrium point if

f(x*,u*,p,*) = 0 (4.12)

The corresponding perturbation equations are

af af
J(x*)8 = F (x*,u*,g*)8x + (x*,u*,gt*)Su (4.13)

One easily verifies that det {J(x)) ---u for o>O, so that under these conditions we can rewrite (4.13)

in the form

8k = A(.*)5x + B(g.*)Su (4.14)

Example. Notice that icO, 8e=.0005,Il=.1, u1=1, at=.0495,0=-.0495,q=0 is an equilibrium point, corresponding to

level flight at nominal velocity. The perturbation equations are

- -.3960 -2.949 -1.0 0 .9987 .00101

d 5cc -1.980 -21.80 0 1.0 Sa -.0495 -2.0 81"1
d 0 = 0 0 0 1.0 so 0 0 8ie

- 0 -599.2 0 -8.0 J L 0 -599.3 J

The dynamical modes are

-.0300 .0273

short period X = -14.961±j23.366, V = .0009 +J .0360

--.8550 - --. 1516

3723 -.2536
-.0081 1.00431

phugoid X = - .13873±jl.2339, V = -.3847 j -.4069

.5554 -.4182
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In characterizing equilibria for systems with feedback control it is usual to associate with (4.11) a

set of outputs equal in number to the control inputs

y = g(x,u41) (4.15)

Then we obtain equilibria by specifying g&* and solving the following equations for x*, u*

F(x*,u*,*) = 0 (4.16)

DetLnition : An equilibrium point (x*,u*,i*) is regular if there exists a neighborhood of It*

on which there exist unique functions x(p.), u(g.) satisfying

F(x(gt),u(g),) = 0

with x*=x(p.*), u*=u(p.*).

Notice that the implicit function theorem implies that an equilibrium point is regular if

det [DxF DuF]* * 0 (4.17)

Definition : An equilibrium point (x*,u*,*) is a (static) bifurcation point with respect to

F(x,u,p,) if in each neighborhood of (x*,u*,p.*) there exists (xl,ul,g) and (x2,u24t) with

(xI ,u l)(x2,u2) and F(x lU 1 ,)=0,F(x2,u2,)=0.

Clearly, an equilibrium point is a bifurcation point only if it is not regular. We can give a useful

interpretation to static bifurcation for systems defined by state Equation (4.11) and output Equation

(4.15). Let us define

C(t*):--x(x*,u*,*), D(Ig*):=- (x*,u*,*) (4.18)

so that in terms of perturbation variables the output equation becomes

8y = C(p.*)8x + D(pt*)8u (4.19)
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With this notation (4.17) is equivalent to

det A(pL*) B(gI*) *0 (4.20)1C(g~*) D(g~*)I

Thus, we have the following conclusion.

Theorem : An equilibrium point (x*,u*,L*) is a (static) bifurcation point only if the

linearized system (4.14), (4.19) has a transmission zero at the origin.

We define stability of equilibria for parameter dependent dynamical systems as follows.

Definition : An equilibrium point (x*,u*,*) is (dynamically) stable if it is regular and

stable in the sense of Liapunov.

Notice that this definition incorporates two essential elements. The equilibrium point persists
under infinitesimal variations of the parameter . (regularity), and the state trajectories remain

bounded following sufficiently small state perturbations (Liapunov stability).

It is common, and useful, to distinguish between dynamic and static stability. A necessary
condition for stability of the equilibrium point (x*,u*,L*) is that the matrix A(g.*) has eigenvalues

with nonpositive real parts, so that it must satisfy

det{-A(g*)) = (-l)lndet{J(x*))det{x (x*,u*,A.*)) > 0

where n=dim(A). Recall that det(J(x)} = u > 0, so that this condition reduces to

(-1)ndet{x (x*,u*,A*)) > 0

Accordingly, we introduce the following notion of static stability.

Definition : An equilibrium point (x*,u*,p*) of (4.11), (4.15) is statically stable if it is

regular and if (-1)ndet(x (x*,u*,p*)} >0.
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Notice that static stability is a necessary but not sufficient condition for stability Also, in the case

of aircraft longitudinal dynamics, as defined by (4.6), n=4. Our definition of static stability differs

from the conventional one (see Etkin 11l) only in the fact that we explicitly include the requirement

that the equilibrium point be regular. It is often the case that aircraft longitudinal static stability

reduces approximately to the requirement that the pitch stiffness is negative. Such an example is

given below.

4.2. Structured Model Uncertainty of Aircraft Longitudinal Model

Example I: Open Loop Properties. We give a simple example which illustrates the impo;ta;ice of

center of gravity location on aircraft longitudinal static stability. Consider the following problem.

With the elevator deflection angle 8 fixed and the velocity u specified, we wish to determine values

of cc, 0 (or, equivalently, y) and 11 which satisfy the equilibnum equatons'. i ne Ixrst equation

can always be satisfied by choosing

H1 = sin(co-y) - Awsinoc - Atsin(oc+8) + Acosot (4.17)

Thus, we need only be concerned with the determination of x and 0 from the remaining two

equilibrium equations

cos(e) - Awcoscx - Atcos(cx+8) - Asin0x = 0 (4.18a)

+- KAwcosc - (1-K)Atcos((x+8) = 0 (4.18b)

Let us consider K to be the only adjustable parameter. Then since ct arid 6 are the dependent

variables we have

DF= [DcF DqFD F[A B 0

A a [-Awcosox-Atcos(a+5)-Asina]

B = -sinO

C ) [lw+KAwcosox-( I -i)Atcos(L+8)]

D Awcosox + Atcos(x+5)

1Notice that q=O in equilibrium.
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Notice that det{Dxf}=-BC--O only if either O=nrc for some integer n or C=0. Thus, a static

bifurcation occurs only if one of these conditions is satisfied simultaneously with (4.18). We can
eas;'v illustrate the significance of the case C=O as K varies. Equation (4.18b) provides a relation

between the center of gravity location (K) and the angle of attack ((x). Figures 4.2 and 4.3 illustrate

this relation for linear and cubic lift coefficient characteristics, respectively. Both curves reveal
similar qualitative behavior. There is a critical cg location lKc (and an associated ccc,Oc)
corresponding to a local maximum and which may be shown to coincide with C(oc,Oc,cC)=O. For
K>Kc there are no equilibrium solutions and for K<icc there are two. In the latter case, the

equilibrium corresponding to C<0 (the one with smaller angle of attack) is stable whereas the the
other equilibrium corresponds to C>0 and is unstable.

0.4

0.35

0.3 -
0

< 0.25
o

0.2-

< 0.15-

0.051

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

cg Location

Figure 4.2 Angle of attack, cc, vs. center of gravity location, 1C, with 'U=.4 and various
values of 8 (from left to right 5=-0.01, 0.01, 0.03, 0.04). Note that K negative means that

the center of gravity is forward of the wing center of pressure.
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0.2

0.1

0

-0.2i

-0.3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

cg Location

Figure 4.3 Pitch stiffness, C, as a function of cg location, KC. The same parameter values

as above.

Note that C may be interpreted as the pitch stiffness. It is a commonly used indicator of aircraft
longitudinal static stability [ 1-4]. In the aviation community static stability is distinct from dynamic
stability. An equilibrium point is said to be statically stable if C>O, statically unstable if C<O and to
have neutral static stability if C--O. In the preceeding example neutral static stability corresponds to
a parameter value at which the equilibrium point is not regular - indeed, it corresponds to a
bifurcation point.

It should be emphasized that this static instability is distinct from aerodynamic stall phenomena.
The cubic lift coefficients used in generating Figure 4.3 are illustrated in Figure 4.4. It is readily
observed that the critical angle of attack in Figure 4.3 is well below the stall angle of attack for
either the wing or the tail.
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6-

4-
U4 2

-2
0 0.1 0.2 0.3 0.4 0.5

Angle of Attack

Figure 4.4. Normalized lift coefficients fw (solid) and ffe' (dashed) plotted as functions of

0X.

In the following Figures 4.6 through 4.11 we illustrate how velocity affects the equilibrium values

of pitch angle and angle of attack.

1.4

1.2 -

< 0.8 ,/

0.6

0.4
0.2

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 b
cg Location

Figure 4.5a Pitch attitude,O, vs. cg location, K, with u=.4, and from left to right 8=-0.01,

0.01, 0.03, 0.04, 0.05, 0.06.
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.2-

p0.1-

0
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

cg Location

Figure 4.5b Angle of attack,a, vs. cg location, K, with u=.4, and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

1.5 -___________________

0.5-

01
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

cg Location

Figure 4.6a Pitch attitude,0, vs. cg location, ic, with o=.41, and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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0
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

cg Location

Figure 4.6b Angle of attack,cz, vs. cg location, ic, with u=.41, and from left to right 8=--

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

1.5

.5-

0
-0.05 0 0.05 0.1 0.15

cg Location

Figure 4.7a Pitch attitude,O, vs. cg location, ic, with -u=.42, and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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0.1 / /

01
-0.05 0 0.05 0. 1 0.15

cg Location

Figure 4.7b Angle of attack,or, vs. cg location, ic, with i,,=.42, and from left to _-ight 5=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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I ~

S 0.8-,

-- J

0.6

0.4-

0.2
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

cg Location

Figure 4.8a Pitch attitude,, vs. cg location, i, with u=.45, and from left to light 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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0.2-

0.15

0 '
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

cg Location

Figure 4.8b Angle of attack,(x, vs. cg location, iK, with u=.45, and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

1.41.2-
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0.4 -

0.2
-0.15 -0.1 -0.05 0 0.05 0.1

cg Location

Figure 4.9a Pitch attitude,O, vs. cg location, Ki, with v=.6, and from left to right 5=-0.01,

0.01, 0.03, 0.04, 0.05, 0.06.
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S0.06-I
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-0.15 -0.1 -0.05 0 0.05 0.1

cg Location

Figure 4.9b Angle of attack,ca, vs. cg location, ic, with o=.6, and from left to right 8 :

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

S0.6v

0.41-I -

0.21
-0.4 -0.3 -0.2 -0.1 0 0.1

cg Location

Figure 4. 10a Pitch attitude,6, vs. cg location, K, with j=.8, and from left to right 6=--

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4. 1Ob Angle of attack,(x, vs. cg location, ic, with u=.8, and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.11 a Pitch attitude,0, vs. cg location, 'K, with -o=l., and from left to right 8=-

0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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_ 0.02-
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-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

cg Location

Figure 4.1 lb Angle of attack,z, vs. cg location, x, with v=l., and from left to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

We obtain another perspective in Figures 4.12a,b&c where the complete equilibrium curves are
illustrated with normalized velocity u=.42 and a elevator deflection angle 8--0.03. These curves
should be compared with Figures 4.13 a,b&c, which correspond to )=1.

1.5 1

- 0 0 .5 1 -

<~ 0)

-0.5 i

-1 !

- 1.5
0.05 0.055 0.06 0.065 0.07 0.075 0.08

cg Location

Figure 4.12a Pitch attitude,0, vs. cg location, K, with u=.42, and elevator deflection angle

6= 0.03.
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cg Location

Figure 4.12b Pitch Stiffness, C, vs. cg location, x, with u=.42, and elevator deflection

angle 8= 0.03.
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Figure 4.12c Angle of attack,z, vs. cg location, K, with x)=.42, and elevator deflection

angle 6= 0.03.

44



1.5

-e 0.5

S 0

- 0.5

-1

-1.5

-0.15 -0.1 -0.05 0 0.05 0.1

cg Location

Figure 4.13a Pitch attitude,O, vs. cg location, K, with u=l., and elevator deflection angle

6= 0.03.
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Figure 4.13b Pitch Stiffness, C, vs. cg location, Kc, with u=1., and elevator deflection

angle 5= 0.03.
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Figure 4.13c Angle of attack,cz, vs. cg location, K, with v)=l., and elevator deflection
angle 8= 0.03.

Example II: Closed Loop Properties. A somewhat more pertinent example with respect to control
system design is the following. Once again consider the longitudinal dynamics defined by
equation (4.6). It is desired to regulate the velocity and flight path angle 1), Y by adjusting the
elevator deflection angle and thrust 6, FI. Thus, we define the output equations

I = yl 1= U-,* I= I --- *
y2 L [y-* a-- *I

Given the desired flight path parameters A.), y we wish to determine values of a, 8, 1I which satisfy

the equilibrium equations (4.16), with

-sinO + Awsina + Atsinat + [I - Acosox

cosO - Awcosa - Atcosoxt - Asina
f(x,u,.t) q (4.19a)

V0
21* {Ew + KAwcosL - (1-K)Atcost - c v  q

gr2  mgr2

g(xug) (4.19b)
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Once again [H is directly determined from (4.17) and we need only be concerned with the solution

properties of the pair of equations

cos(ct-y) - Awcosax - Atcos(a+8) - Asina = 0 (4.20a)

Y- + KAw~coscc - (I-K)Atcos(cx+8) = 0 (4.20b)

Figures 4.14 a&b illustrate the equilibrium values of elevator deflection, 8, and angle of attack, a,

as a function of cg location, K, at cruise conditions u=1, y=0O.

0.4

90.3-

Z0.2k

0
0 0.1 0.2 0.3 0.4 0.5

cg Location

Figure 4.14a Elevator deflection, 8, as a function of cg location, K, withiu=1, ry=0.

0.045,

S0.04,

-(J.035

0.03~

0.0251-
0 0.1 0.2 0.3 0.4 0.5

cg Location

Figure 4.14b Angle of attack, (x, as a function of cg location, K, withiu=1, y=0O.
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In Figures 4.15a&b we illustrate the eigenvalue locations as a function of cg location, 0<ic_<.4.

Figure 4.15a clearly shows the expected short period and phugoid branches. A loss of static
stability occurs at approximately K=.12. Interestingly enough, although the Jacobian
Dxf(X*,u*,p*) is singular, this does not correspond to a bifurcation point because the Jacobian

Dx, lF(x*,u*,t*) is not.

10

5

-5.

-10i ,

-30 -25 -20 -15 -10 -5 0 5

Figure 4.15a Open loop eigenvalue locations as a function of cg location, K, at cruise

conditions.
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1 .
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-4 -3 -2 -1 0 1 2

Figure 4.15b Near origin blowup of open loop eigenvalue locations as a function of cg
location, K, at cruise conditions. This figure clearly illustrates occurrence of a divergence

instability as the cg moves toward the rear of the aircra' and one of the phugoid roots
crosses into the right half plane. This occ- -s at approximately K=. 12.
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4.3. Worst Case Design Analysis for Aircraft with Relaxed Static Stability

The linear dynamic model for the aircraft described in the previous section taken about the nominal

operating condition k=O is statically and dynamically stable. The linear perturbation equations can

be written in the state space form as

= AKx + BKu

y = CKX

with state x=[oy,0,q]t, control U=[,elt. For iK=0 we obtain the equilibrium conditions for

level flight in terms of the state vector,

0.0497523

X eq 0.0497523

eq 0

and the control

U eq 0.0002477
0.09962901

The linear perturbation model coefficients are then obtained:

[-0.1990115 -0.9945490 -1. 0.]

-1.9900905 -22.099498 0. 1.
AO . 0. 0. I.

0. -599.25016 0. -1.

[ 0.0004955 0.9987626 -

-1.9999999 -0.0497317

-599.25016 0.

The model exhibits the characteristic pair of underdamped short period and phugoid dynamic

modes;
Open loop poles at K=O

- 11.587041 + 22.020408i
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- 11.587041 - 22.020408i

- 0.0622142 + 1.3864461i

- 0.0622142 - 1.3864461i

The choice of outputs defined by

F1. 0. 0. 0.1
0. -1. 1. .

gives a real transmission zeros at 77.196225 and - 78.196225. The right half plane transmission

zero which will ultimately limit the bandwidth of the closed loop system for robust stabilization.

The pole zero plot is shown in Figure 4.16.

24 .2 imag

8.1

----------------------- ---------------

-8-

-24 -

-86.1 -29.1 28.0 85.0

real

Spoles
* zeros basile

Figure 4.16: Pole-zero plot for nominal statically stable aircraft.

If the CG shifts aft by .12 relative to the effective nominal moment arm for tail controlled pitch
motion the aircraft becomes both statically and dynamically unstable. The resulting pole-zero plot

is shown in Figure 4.17, although the equilibria shift only slightly to:
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0.0438289
Xeq [0.0438289

L 0. J

and

[0.06692171
Ueq 0.0804625

0 . 65 ,-

0.5

--. II oi III 111I

-86.0 -29.0 27.9 84.9

real

x poles
a zeros

Figure 4.17: Pole-zero plot for statically unstable aircraft configuration.

To procede with the minimax (worst case) design we first determine the minimum achievable
stability margin based on the optimization procedure and its dependence on the unknown parameter
0 !<!!0.12. This dependence is shown in Figure 4.18. The optimal geometric stability margin is
dependent on the CG shift as shown. For this range of the independent parameter the worst case
condition is the aft most location of the CG as expected.

51



.000 t aot*ma

. 661

. 333

.000

0.000 0.050 0.100 0.150

mu

Figure 4.18: Optimal Stability Margin Dependence on k.

The optimal robust geometric stability margin can be given the interpretation of providing a bound

on the allowable perturbation to a normalized left coprime factorization of the plant. One can

therefore ask if the unstructured uncertainty condition for robust synthesis can provide conditions

for stabilization of the flight dynamics model with aftward shift in the CG of 0.12. From the

above the optimal stability margin variation is continuous and monotonically decreasing with the aft
shift. Taking the aft-most location as worst case we can compute a maximum additive plant

perturbation directly in terms of the normalized left coprime factors of the plant for the nominal

case

Go(s) = r4] (s)Ro(s)

and for the case at k--0. 12;

GK(s) = MI1(s)& (s)

then we can obtain the required bounds by plotting the singular values of

[ Mo Rol (0~) - [ 1 C gRjl(i

as shown in Figure 4.19.
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Figure 4.19: Singular Values of NCP Factor Perturbation

Thus using the unstructured model uncertainty description obtained from the geometric stability
margin and the expected perturbation to the NLCP factors we see that the required bound is

Csm=0.7 6 19 . This means that to design a stabilizing compensator using a totally unstructured

requirement is so conservative in this case that it cannot in fact be obtained! Indeed, from the
above plot of optimal stability margin vs. CG shift we see that no operating point obtains an
optimal geometric stability margin in excess of 0.56. This is typical of unstructured uncertainty
modeling and robust control synthesis. However, it is significant to note that using the geometric
stability margin and the optimal robust stabilization problem a unique, quantitative criterion for
robust stabilization is obtained which addresses the problem without examining frequency

dependent data.

To illustrate the options for design using the optimal robust stabilization formulation we first

consider scaling and its effect on the closed loop design. We first consider the design for a fixed,
nominal operating point.

The MIMO open loop system has gains displayed as frequency dependent singular value plot as

shown in Figure 4.20.
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Figure 4.20: Singular value Loop Gains for nominal Plant Transfer Function.

Given the ultimate bandwidth limitation imposed by the right half plane zero at -77 we choose a
nominal crossover frequency of o=10. Rescaling the inputs and outputs proceeds first by

consideration of the relative importance of changes in each channel. For the nondimensional model
the inputs consist of thrust and deflection of the tail control surface and the outputs include velocity
and flight path angle. Scaling to obtain equalization of each channel follows from the choice of
nominal value and relevant changes as:

nominal relative

[ 1 0 0. 1

Y- 0 .0873 ] -

Let the input/output scaling be given by the diagonal matrices as:

.1 O
u= Sif=[ 0 .5236 1

r05 0 ]
y=So=[ 0 .0873

then the transfer function becomes G(s) = S-IG(s)S.
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Finally, to specify desired crossover frequency we reduce the effective plant gain in each channel

so that the maximum singular value at desired crossover satisfies. The resulting scaled plant has

gains as shown in Figure 4.21 for the worst case parameter value of k=. 12.

10 svd

10-2 I

10 0 6

frequency

Figure 4.21: Singular Value Loop Gains of Scaled Plant.

The optimal geometric stability margin for the scaled plant is now computed as Esm=.2 7 7 2 . We

note that the procedure described previously suggests that the system has compatible loop shape.

We can now obtain a suboptimal controller for any desired level of stability robustness as
'y>1/.56t=1.783. We take the suboptimal level =1.8 and obtain by the (2.19)--(2.22) the

controller realization as:

-137.81869 -159.443 157.59503 0.0071676-

202.57323 240.27344 -262.55426 0.9675697
Ac= 687.31722 884.00473 -884.00473 1

L 4043.8865 4666.5232 -5317.9173 -10.610107

10.200762 -22.84293
c 34.365861 -77.173613

L 196.7627 - 440.94193
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14.7375856 9.371697 -11.645754 -0.41910801
18.620063 -0.4424553 -0.2898523 -0.0357794]

To illustrate that the resulting suboptimal controller achieves the required stability margin over a

broad range of frequencies we plot the singular values of

(DO(jCO) = [MQ - P1(jIo)

where K(s) = P(s)Q 4I(s) is a normalized right coprime factorization for the achieved controller

K(s) = CclsI-A]-IBc (see Figure 4.22). To highlight the broadband solution obtained from this

problem we plot separately the maximum singular value of F (i.e. the geometric stability margin) in

Fig. 4.22a and minimum singular value in Fig. 4.22b.
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Figure 4.22a: Maximum Singular Value of 4)
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Figure 4.22b: Minimum Singular Value of (D.

Finally, the achieved loop gains are displayed by plotting the singular values of K(s)G(s) in Figure

4.23.
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Figure 4.23: Achieved loop transmission gains.

For direct comparison we superimpose the desired loop shape with that achieved from the

suboptimal compensator for the scaled plant response.
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Figure 4.24: Achieved/desired loop transmission gains

4.4. Performance Considerations for Aircraft Flight Control
In this problem we introduce two modifications of the previous problem. First to illustrate design

for performance robustness we introduce a requirement for integral action in each channel.

Second, to test the worst case parametric design problem we perform the design for the worst case
operating point at lc=. 12. We also assume there is a dominant source of modeling error which is

characterized as relative error in terms of bounds on multiplicative perturbation at the system
output. We assume this is given by a specification that the model is to be considerd accurate to
10% for frequencies less than 2. Beyond o>2 the model relative error increases at 20dB/decade.
Thus the relative bound lm>llDmll is greater than 1 for co>50.

To motivate the choice of weighting functions we consider the requirement for steady error
reduction and consequences for integral action in each loop. From the discussion in Blight,
Gangsaas and Richardson [11 we see such requirements are apparent in LQG/LTR type designs but

the application is much more difficult to implement than using the present method. To balance the
requirements for integral action with loop crossover at co=10 we performed a simple tradeoff with

PI type weighting in each channel to obtain the desired loop shape. The weighting considered has

the form:

W l(s) = is0

Tis
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A value of t=.7 was chosen.

It became apparent that from the perspective of multiplicative model errors at the outputs the high

frequency attenuation needed to be increased. We therefore added first order rolloff in terms of the
lead/lag weights:

W2(s) = rpS+1 0

0 TzS+1

where values of 8 and 80. were chosen for the lead zero, resp. lag pole. This permitted increased
rolloff in the region after cutoff without serious attenuation near the desired cutoff frequency. The

shaped loop gain in displayed in Figure 4.25.

-% Loop Gains for Shaped Worst Case

o12

10-

aNN

1r
3  b- ib Lg

frequency

Figure 4.25: Desired loop shape with weightings.

The shaped transfer function dynamics are summarized in terms of the transmission poles and
zeros in Table 4.1.
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Table 4.1: Shaped Transmission Poles and Zeros

poles zeros

- 80. 77.196225

- 80. - 78.196225

0 -8.
0 -8.

- 29.556023 - 0.7

6.7912262 - 0.7

- 0.2004232 + 1.4435674i

- 0.2004232 - 1.4435674i

For this loop shape we compute the optimal stability margin as esm--0.2 7 7 2 . Then we choose the

desired suboptimal level for controller synthesis as Y7l/.2772. Here we take y=3.65 and

synthesize the suboptimal robust control for the weighted plant. Incorporating the weighting

functions into the controller K(s) we obtain the achieved loop gains as displayed in Figure 4.26. It
can be seen that the specifications given in tei-ms of relative model uncertainty at the outputs

(multiplicative errors) together with performance specification for integral action and cross over
frequency at least o= 10 have been achieved.

105  svd Achieved Loop Gains @k=.12

10 3 . ''" . " ,,

101

i@ ""-. \

10. . "-'---lj~ JI

Figure 4.26: Acheived Loop Gains for shaped worst case design.
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To check the assumptions implicit in the minimax/maximin equivalence for parametric robustness

we evaluate the stability margin achieved by the worst case design at the nominal, stable

configuration of K=O (the other extreme of the parameter variation in this case). The resulting

stability margin achieved is Esm--0. 2 5 8 3 as seen from Figure 4.27.

Achieved Stability Margin for stable config
0.91 - °"

a I .
III

Figure 4.7 civdSailt/agn@ -

Finally, to illustrate t.he effect of the worst case design on the nominal, stabel aircraft configuration

we display the achieved loop gains for this case in Figure 4.28.

1@ ' Achieved Loop Gains for k=O

frequency

Figure 4.28: Achieved Loop Gains for stable configuration.
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The closed loop system poles for the nominal stable configuration with the control as designed

above can be computed as:

Closed Loop Poles for nominal (stable) aircraft

- 1819.4462

- 270.14803 + 29.621817i

- 270.14803 - 29.621817i

- 78.048361

- 7.222071 + 25.3900961

- 7.222071 - 25.390096i

- 12.391449

- 7.4595557
- 2.)803007

- 2.0285601

- 0.7878369

- 0.6121988

5. Conclusions and Directions for Future Research

5.1. Nonlinear Control Design for Robust Flight Control

In order to achieve enhanced maneuverability and efficiency, future aircraft will operate close to or

even beyond open loop stability boundaries. For example, reduction of horizontal tail size in order

to achieve reduced fuel consumption results in loss of longitudinal static stability for sufficiently aft

c.g. locations I 11. Fighter aircraft may operate at high angle of attack or at high roll rate where

nonlinear effects cause loss of stability 161. Such aircraft require augmentation by automatic flight

control systems which induce the desired handling qualitites over the full range of flight

conditions.

Feedback controllers for these applications are typically conceived to be linear, perhaps with some

form of gain scheduling. However, when operating near stability boundaries the system dynamics

are nonlinear in an essential way. It is well known, for instance, that a linear perturbation model is

a reliable indicator of stability only if none of its eigenvalues lie on the imaginary axis 191.

Otherwise nonlinear effects are crucial. Some recent studies in flight mechanics characterize

aircraft loss of stability in terms of elementary local bifuucations 110-111. Thus, divergence

instability is typically associated with a saddle-node b;",trcation and a change in the equilibrium
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point structure while flutter is associated with a I lopf bifurcation and the appearance of a limit

cycle. Such phenomenon, of course, are fundamentally nonlinear.

Unfortunately, these studies deal almost exclusively with open loop dynamics under parameter

variation and very little general theory is availiable concerning the design of feedback controls near
bifurcation points. We can, however, draw some obvious inferences although our remarks will be
confined to static instability (divergence). It is known that linear feedback can be used to stabilize a
divergence instability. McRuer et al 141 note that in aircraft such stabilization requires high gain,
wide bandwidih control. Such controllers may be sensitive to actuator saturation and excitation of

high frequency parasitics. It is our view that these problems assume exagerated proportions
because of the attempt to force a linear solution on an intrinsically nonlinear problem.

Note also that when the system operates near a saddle-node bifurcation point, the stable

cquilibrium tnpoint is necessarily close to the boundary of the domain of attraction (the neighboring

unstable equilibrium is on the boundary.) It follows that the system may be unacceptably sensitive

to external disturbances. Performance can sometimes be dramatically improved by nonlinear

feedback. In fact, the substantial improvement obtained by Garrard and Jordan 161 in recovery

from stall by using a nonlinear feedback can be explained by this observation.

Techniques for the design of nonlinear feedback control systems are still very limited and tend to
be tailored to specific situations. The most promising approaches appear to be those associated

with methods of exact linearization. This procedure is based on some early work of Krener 1441
and others demonstrating that a large class of state equation models for nonlinear dynamical

systems can be exactly linearized by a combination of nonlinear state feedback and a nonlinear

transformation of stae coordinates. Once the system is linearized all methods of control system
design for linear dynamics become applicable. The inverse transformation is then implemented in
conjunction with the linear compensator so that the overall controller is nonlinear. Meyer and his

coworkers have articulated the application of these ideas to certain problems in flight control its an

alternative to gain SChedLuling.

Another approach termed input-output linearization has evolved from work of I lirschorn 1451. The
niotion of input-output linearization as developed by Kravaris and Chung 1461) is based on the so-

called Byrtes Isidh)ri canonical form 1471 for nonlinear systems. This approach produces a1 linear
iup t output m)del and may have certain advantages especially when frequency domain design

nitto:lds are to be use(d for compensator design. The attractiveness of such methods is further
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enhanced by recent frequency domain formulations of Hopf bifurcation analysis [121 with

application to multivariable nonlinear control system analysis [541.

Although these methods may be formally applied at or near bifurcation points such applications

have not been studied. It is interesting to note that another approach to linearization which has

generated some interest in recent years, the extended linearization method of Rugh [59] fails in an

obvious way at bifurcation points.

The essentials of the approach are most easily understood in terms of the single input single output

problem. Consider a nonlinear dynamical system in the form

X = f(x) + g(x)u (5.5a)

y = h(x) (5.5b)

where f, g are smooth vector fields on Rn and h is a smooth function mapping R n -* R. Now,

differentiate (5.5b) to obtain

ah
y = (f(x) + g(x)u) (5.6)

If the scalar coefficient of u is zero, we differentiate (5.6) and continue in this way until a nonzero

coefficient first appears.

This process can be succinctly described by introducing some conventional notation of differential

geometry and analytical mechanics. We need only the concept of Lie derivative. First, the Lie

(directional) derivative of the scalar function h with respect to the vector field f is defined as

ah
Lf(h) = (dh, f )= f(x) (5.7)

Since the Lie derivative is itself a scalar function on Rn, higher order derivatives may be

successively defined

k k-1 = ,dk-( )(58L (h) = LI(Lf (h)): (dLf (h), f (5.8)

Now, (5.6) can be written
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= (dh, f ) + (dh, g )u = Lf(h) + Lg(h)u (5.9)

If Lg(h) = 0, then differentiate (5.9) to obtain

2
= (dLf(h),f) + (dLf(h),g )u = Lf2(h) + Lg(Lf(h))u (5.10)

If Lg(Lf(h)) =0, then differentiate (5.10). If Lg(Lf-l(h)) = 0 for k = 1,.., r-1, but Lg(Lrfl(h)) # 0,

then the process ends with

dry = Lf(h) + Lg(Lr-l(h))u (5.11)dtr

The number r is called the "relative degree" or "characteristic number" of (5.5). Note that if we

define the coordinates zE Rr

k-i
Zk = Lf (h), k = 1,..,r

then Equations (5.9) through (5.11) can be written

I010. 0 . 0
0010. 0

k=..0 1 0 Z + (5.12)
1 0

L 0 0 0 J L CO) + P(x)u

where

at(x) = Lf(h), and p(x) = Lg(Lfl'(h))

Formally, the system (5.12) may be linearized and simultaneously stabilized in the input-output

sense as follows. Choose the control

u = (I(x,v) = (v - a(x))/p(x) (5.13)

where
r-1I

G(X k r L(L'_-1(h))
,(x) = XkLf(h) + Lf(h), p(x) = L L f

k=O
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and Pk, k = 0,.., r-1 are real numbers corresponding to the coefficients of any Hurwitz

polynomial. Then the relationship between the new control input v and the output y is defined by

the linear r-dimensional (completely controllable and observable, companion form) system[0 10 0] -0
0 0 1 0 10

Z 0 1 0 z+ K v (5.14a)
1 0

L -p30 -o3 13-

y= [ 1 0 01z (5.14b)

These calculations are readily extended to MIMO case [55, 56].

The importance of this construction is that linear dynamic compensators may now be designed for

the resulting linear syscem using any applicable linear method. The exact linearization is global if

the transformations admit unbounded control u; otherwise, the linearization is local. However, it

should be emphasized that unlike traditional linearization about a fixed operating point or trim

condition (based formally on Taylor series expansion) the approach just described linearizes the

system dynamics about a nominal model. Open questions in the available theory for such

linearization includes the effect of such control constraints and parametric uncertainty.

5.2. Linear Mode Design and Critical Nonlinear Dynamics
For the limited scope of the phase 1 study we have focused on computational studies for relaxed

static stability aircraft where the parametric uncertainty is related to the shift of CG during flight

operations. The underlying nonlinear dynamics illustrate the role of parameters in determining the

dynamic properties of the resulting family of linear perturbation models. What is evident from our

analysis and numerical computations so far is the significance of the transmission zeros to this
parameter. Certainly in the region which we considered for variation of Kc the transmission zero are

relatively insensitive by comparison with the system poles. However, this does change as the
variation of ic is extended to approach the static bifurcation point for the system equilibria. It has

been shown that in feedback systems static bifurcation is associated with the passing of a real zero

through the origin. This differs from the conventional case in dynamical sytem theory where static

bifurcation is associated with a real eigenvalue passing through the origin. In this region we expect

the sensitivity of the system optimal stability margin to be significant, indicating a difficult control

design problem. It is our conjecture that part of the limitation evidenced in such regions comes
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frnm the linear mode design approach where we are essentially trying to design a single fixed (and

therefore robust) linear compensator for the linear plant. The requirement for stability of the linear

mode design has the implicit objective to maintain the system state near the desired equilibrium or

trim condition. Near a bifurcation of the equilibria under parametric variation we expect the

domain of attraction to change depending on the type of bifurcation. Clearly, the underlying

nonlinear dynamics will be significant for control of the system dynamics in such operating

regimes.

Such considerations have lead engineers to develop various methods for gain scheduling--most of

which are ad hoc. On the other hand the previous discussion on feedback linearizing control for

certain nonlinear systems provides a complete analytical basis for control design based on

linearization about a nominal system model rather than about an equilibrium operating point in the

system state space. Despite the abstract basis for the theory of feedback linearization, its practical

application provides an analytical basis for gain scheduling the linear mode design. Both methods

are essentially model-based control design schemes and therefore robustness considerations are

important in applications. Flight control systems often employ gain scheduling with respect to

various measurable system parameters (e.g. velocities, angle of attack, etc.) for operation in

nonlinear regimes. It is our view that methods for integrated design of multiloop controllers based

on methods related to feedback linearization may provide enhanced capabilities for such high

performance flight control problems as recovery from stall. In the Phase 2 effort we will propose

to study methods for robust design and implementation of such nonlinear control laws.

5.3. Research Directions for multiparameter worst case design

The worst case design procedure based on the maximin design is computationally feasible if the

number of real parameters is small since the evaluation of the optimal controller dependence on cc is

simple. It is therefore suggested that in applications the plant be modeled with the less significant

real parametric uncertainty embedded in the unstructered uncertainty bounds. This is the practical

aspect of the methods we will propose to investigate and develop in Phase 2: that we seek a

pragmatic approach to implement the available methods in optimization based approachs to robust

control synthesis for structured uncertainty together with more well developed methods for

structured uncertainty. We believe that this blend can be developed with respect to a significant

class of flight control problems where dynamic degrees of freedom are relativly small.

The focus of the Phase I study has been on developing a method for robust stabilization of models

subject to combined real parametric uncertainty and parasitic (unmodeled) dynamics. Our efforts

were directed toward eliminating the source of conservatism abundant in such design methods
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while retaining the essential feature of robust design in the engineering context. We feel that the

optimal worst case design methods described above addresses these concerns in principle. The
result however, is a computationally difficult problem in the general case. Our approach in the

benchmark designs has been pragmatic. We also believe that the essential features of the nonlinear
dynamics of flight control designs will serve to restrict consideration of the variation of physically

based real parameters which effect the aircraft dynamics. Nevertheless, we feel that a focus of the
Phase 2 proposal should be in the area of algorithm development for the minimax (worst case)

design for realistic combination of structured uncertainty (arising from physical parameters) and
unstructured uncertainty (arising from unmodeled dynamics).

We also feel that the entropy interpretation of the results of Bernstein and Haddad --and therefore
the results obtained in Yeh et al [41] -- may offer additional perspectives on how inherent

conservatism of such designs can be reduced. The analysis achieved to date represents only a

special case for these problems.

The loop shaping procedure has been shown to be effective with many desireable properties.
However, the choice of loop shape has not been adequately addressed. In particular, the
modification of loop shape to incorporate knowledge about system uncertainties, the question of
how loop shape affects Emax, and the role and use of loop shaping for decoupling and scaling are

all potentially fruitful directions of inquiry.
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AN H. DESIGN PROCEDURE USING ROBUST STABILIZATION

OF NORMALIZED COPRIME FACTORS

by

Duncan McFarlane I and Keith Glover

t Department of Engineering, University of Cambridge,
Trumpington Street, Cambridge, CB2 IPZ, United Kingdom.

ABSTRACT - A two stage H. based design procedure has
been described which uses a normalized coprime factor approach

to robust stabilization of linear systems. A loop-shaping pro-
cedure is also incorporated to allow the specification of perfor- * U'

mance characteristics. Theoretical justification of this technique
is given and an outline given of the design methodology.

1. INTRODUCTION

In a number of recent papers it has been shown that H
optimization can be applied to the problem of robust stabiliza-
tion of unstructured uncertainty. (See Francis [4], and the ref- Figure 2.1 Coprime Factor Uncertainty

erences therein.) This paper describes a design technique based
on the robust stabilization of a particular representation of un- where K is chosen over all controllers which stabilize G. The
structured uncertainty, namely that of normalized 'stable fac- solution for the largest achievable f (= e,.,) is generally iter-
tor' or 'coprime factor' perturbations. (See Vidyasagar [15], for ative [16], but, if the left coprime factorization (LCF) of G is
a suitable introduction to coprime factors, and [7] for a corn- normalized, meaning
plete solution to the normalized coprime factor robust stabiliza-
tion problem.) The design technique, which also allows perfor- M(jw)M(jw)" + N(jw)N(jw)* = r for all w (2.4)
mance objectives to be incorporated, has two stages: (1) A loop
-shaping approach 'shapes' the nominal plant singular values to then it is possible to show ([6], [7]) that a maximum value of e
give desired open-loop properties, and (2) The normalized co- can be obtained by a non-iterative method, and is given by
prime factor robust stabilization technique mentioned above is
used to stabilize the shaped plant. =maz (I - [(M, NIIIH) (2.5)

2. THE NORMALIZED LEFT COPRIME where 11011H denotes the Hankel Norm, and e,,,. is called the
FACTOR ROBUSTNESS PROBLEM mazimum itability margin.

Remark 2.1 It can be simply shown that the problem in (2.3)
We firstly summarize the main results of [6], [7[ for the nor- is equivalent to the 'four block' problem:

malized LCF robust stabilization problem. It has been shown
14, [161 that an attractive way of representing unstructured K
uncertainty in a plant is via coprime factor perturbations. That GK)

is. if the nominal plant is
and hence this also has a minimum solution given by (2.5).

G= =/-'/ N (2.1)

then a perturbed plant is written 3. LOOP SHAPING METHODS

G, = (M + AM)-'(N + AN) (2.2) In feedback design many performance and robust stability

objectives can be written as requirements on the maximum sin-
where k, N" is a left coprime factorization (L.C.F.) of G, and gular values of particular closed-loop transfer functions. The
Am, AN are stable, unknown transfer functions representing the principal idea of 'Loop Shaping' is that the magnitude (or max-
uncertainty and satisfying lilAm, AN)LJd < e where f > 0 (See imum singular values) of these closed-loop transfer functions can
Fig 2.1) A design objective is then to find a feedback controller be directly determined (over appropriate frequency ranges) by
Kwhich stabilizes all such GA for a given e. Following [16], the singular values of the corresponding open-loop transfer func-
this can be rewritten in the framework of an Ho, optimization tion. (The reader is referred to [3] for a comprehensive introduc-
problem: Find a stabilizing conioltlr K such that tion to loop shaping methods.)

1 -KFor example, for a plant, G, and controller, K, if a(GK) >
K( - GK)- 1  2.3) 1 (typically at low frequency) then
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4. THE DESIGN PROCEDURE

dB~

€(GK) 4.1 Outline of the Design Procedure

We will now formally state the design procedure that was

proposed in Section 1. The objective of this approach is to in-
corporate the simple performance/robustness trade-off obtained

L og W in loop shaping, with the guaranteed stability properties of H,,
design methods.

U00) 'The Loop Shaping Design Procedure (LSDP)'

(1) Loop Shaping - using a precompensator, W1, and/or a post-

" (GK) compensator, W 2 , the singular values of the nominal plant
are 'shaped' to give a desired open-loop shape. The nominal

a plant, G, and 'shaping functions' W,, W 2 are combined to
form the 'shaped plant', Gs where Gs = W 2GWI. (See
Figure 4.1a.) We aisume that W, and W 2 are such that

Figure 3.1 Loop Shaping Specifications Gs contains no hidden modes.
(2) Robust Stabilization - a feedback controller, K,,, which ro-

F( - GK) - ') S 1/G(GK) (3.1) bustly stabilizes the normalized left coprime factorization of

3(( - GK)-G) :E (G)/a'(GK) (3.2) Gs, with stability margin e (= -), is synthesized, using
the approach outlined in Section 2. (See Figure 4.1b.)

and if c(GK) < 1 (typically at high frequency) then (3) The final feedback controller, K, is then constructed by com-
bining the H.. controller, K., with the shaping functions, W

a(K(I - GK)-') E F(K) (3.3) and W 2 such that K = WK oW 2 . (See Figure 4.1c.)

a(GK(I - GK)-i : .;(GK). (3.4) Note that, in contrast to the classical loop shaping approach,
the loop shaping here is done without explicit regard for the

For good performance we require Y((I - GK)- i) and nominal plant phase information. That is, closed-loop stability
a((I- GK)- G) to be small (particularily at low fre- requirements are disregarded at this stage. Also, the robust sta-
quency) and for good robust stability properties we require bilization is done without frequency weighting. The parameter e
r(K(I - GK)-') and "(GK(I - GK)- ') to be small (at high can be seen as an indicator of the success of the loop shaping,

frequency in particular). A typical closed-loop design specifica- where we note by (2.5), f < 1 always. A small value of e (e ( 1)
tion can therefore be ilustrated as in Figure 3.1, and the desired
closed-loop behaviour can be achieved by manipulation of the
open loop gains, F(GK), _(GK). W G

However, this open-loop shaping approach is complicated by
the need to ensure stability of the resulting closed-loop system. (a)
This requires that plant phase properties also be considered, and G
the loop shape can be shown to be limited by such stability s

requirements. This is examined in [1] for the SISO case, ant: in
[3] for a MIMO extension. Further, these requirements are even
more restrictive if the nominal plant has REP poles or zeros.
(See [12] for example.)

A loop-shaping approach that is somewhat simpler from the
designers point of view is that used in the Loop Transfer Re-
covery (LTR) method in LQG design. (See [9] and [2].) In (b)
this method, the designer specifies a desired singular value loop-
shape, and the guaranteed stability properties of the LQG com-
pensator ensure stability. LTR however, cannot systematically M (d)
deal with plants with RHP zeros (see [13]), and is limited in that G
it can only guarantee performance and robust stability proper-
ties at either plant input or plant output.

The design technique that is proposed in this paper is sim-
ilar in philosophy to LTR: The designer specifies a desired loop

shape and then the 'shaped' plant is further compensated by a
controller using the norm alized LCF robust stabilization method ...... ......................................................... K
of Section 2 to ensure closed-loop stability.

MC)

Figure 4.1 The Design Procedure (a) Shaped Pinlt, (b)
Robust Stabilization, (c) Final Controller.
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:n Stage .21 always indicates incompatibility between the speci-
fled loop shape. the nominal plant phase, and robust closed-loop 10 _0_IWk_1

stability. Hlence th~e loop shaping of Stage (1) is connected to
the routstabilization of Stage (2) via the indicator e. 0 .*

A tpical design works; as follows: The desiginer inspects the ol. .. ' '
open-.ooti sin giilar v-alues of the nominal plant, and shapes these IV............Y ....

by pre a.,d 'or post compensation until nominal performance jl , ___

andi possib.:' -obust stability) specificatons are met. (Recall 10; 10. 10' 104 1 W-

that the ,snen-loor shape is related to closed-loop objectives.) A
feedback controller, K_, with associated stability margin (for i0, W 10'I20

the shaped plant) e ,~ is then synthesized. If fis small, .

-hen the desir-cd performance :s incompatible with robust stabil- 10-, 1
it eqmtents, and the loop shape should be adjusted accord- A- a

ngly, adK_ eeautd (In Section 5, the expl-icit depen--
dience of pe!rformancre and robust stability objectives on E will he 10' r

is0" i10i1 s ill. is'
shw.This procedture is both simple and systematic, and only f ~ t
:e.unp s i::wle~of elIementary loop shaping principles on theSpcfe

oar' 0 ---------"r Achieved

4.2~ Comments onl the Design Procedure

T ~e -o'wivng comnments reter to the design procedure given Figu-e 4.2 Specified and Achieved Loop Shapes-RHP

4 '. Zeros Example
1. in -,eLfl, -- aping Design Procedure we hiave interpreted
-he, 'n-i'." as' a design indicator rather than as a specific comparing the specified and achieved loop shapes for each case

_* 0 5 ss:n 0er the notional perturbations on the normalized in Figure 4.2.
C F of -,h hed plant: In Section 5 we will show that anyi In the next section, we give theoretical justification for using

-a i"1; con-, l er achieving '~I will lead to deterioratic - in the loop shaping design prociedure
* %e ac' mnst -d looo -snae ron: -- d with the Apecifitd loop shape
St ow or . einis or will imply poor robust stability

i si ,:tdcross-over frequency regOn. 5. PROPERTIES OF THE DESIGN METHOD

1 .aplcbe osabe, unstable, naium

___ __ phase plants. provided they satisfy the minli- 5.1 Controller Magnitude Bounds
r,0r- for vn design - that is, there are no unstable In the previous section we specified the desired loop shape

- I-a perfrtae rti aiplnt will not-inimr s pihee by W2 GWI (Fig. 4. 1a), but the actual loop shape achieved is in
t~-lrzud -wr~rmalceretri ;os ill3ti exstin he e- fact given by W1 K.W-'C at plant inpot (point (i), Fig 4.1c),,-e" procrntire: It is weU known. (see 181 or [51 for exaimple) adG 1 W5 tplnouut(point (ii), Fg .c.W

that t',e presence of a non minimum phase (RI{P) zero in the will now show that the degredlatioin in thle loop shape caused t,,

'6-- hv-i , the rcibl bhapnw ind Prdrestt lo thle H_ controller K. is limited at those frequencies where the
-e~t "--v- ''havnri In th Lop Sapig Tu-sgn rocdur, a desired loop 'hape is sufficiently large or sufficiently sma:

-nc.is iincottioati!hlc wi ti, these generic i,.trictions

la' Ga 'small' value in Stage (2). To iilustrate this, 5.1.1 Low Frequency Behaviour

.1~i-rte fclowing example: At low fr~equency (in particularx w (0, u.,)) the deterioration

Lpt a nomiinal plant be given by G 2 , and we select in loop shape at plant output can be obtained by comparing

t k. a -'rtnas the shaping function. The shaped plant is OGVI KVWm) with i( W 2GWI ). Note that:

'hen C-.WG k- 1) By :8 we know that the closed-loop ~w~ 2  ~ eWG iaK)'( 2
bandwnthh~ss;,-actical limit of ir /s because of the RHP zero (I

a s in G. Noting that the crossover frequency of the open- Sirth'larily, for loop shape deterioration at plant input we compare
wop sx:'r-e- the closed-loop bandwidth, we now select 0,(Wi K, W 2G) with a(VW'2GWI ) and we have

1,)u. v- lues of k. the largest yielding a crossover frequency tht
: insornpanbe with the baniduwidth limitations. The resulting a(KG) = rW 1K.W 2 G'I > c(W2GWl)E(K_)/cWi)
eval:- iaft'-r S-age '?l of th'- Loop Shaping Design Procedure (5-2)

a'In each cse, cr(K.) is required to obtain a I.-uind on the dete-
I roration in the loop shape at low frequency, ' ,te that the con-

k .0 o 4 dition numbers elW W and c( W 2 arc sele-cted by the designer,

k 0 50 ~~38S and are commonly ot order one

k~.I '<0577The following result shows that 7(K-) is explicitly bounded
by functions of earid o7 Gs), the minimum singular value of the

k 2) 0 ' 6, shaped plant. We assume here that the shaped plant Gs has

an equal nmTTber of in pits arid oujtputs. For '-()vetlience, the

ci asoei&''1 wb k 2(1~st'-tniV mal. Jaraineter, (idefin''i -f will be ii' -d in the- followin,

',:-Tn..atibe !oop shae' i, is ronifirmted by aj;lyi
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Theorem 5.1 Any controller, K_. satifyng for ah ., such that
1

,, r . U(Gs(jW)) < -__ .
["GsK°) -'tI- I < 7 Y

Again, if w, consider those frequencies at which a(Gs) <
'hierC I N,, A!,) is a normalhzed L CF of Gs, also satisfies = then we have the following result:

J9I2- I

K 2 ts(jl) - (72-1) 3) Corollary 5.4 Following the notation of Theorem 5 , f

+'-( +a2 (Gs(jwj)) i- -yo(Gs(k )) d7(G,(jw)) < --- then
for all such that 
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eyGsOj. )) >- /'- 1. (K ,(j)) <"./ T  ,

Proof: This follows immediately frum (5 6) y noting that
(Lengthy proofs are omitted in this paper, and the reader "(Gs) < , implies d(Gs) < 1, and <<b'G") KK i- -

is referred to [11 for full details.) 1)11.

The main implication of Theorem 5.1 is that the bound on
,, K ) depends only on the selected loop shape, and the sta- Remark 5.5 The approximate results in ,I rC.. . 1 2 ,aid
uiity margin. The value of -y directly determines the frequency 5.4 show that at frequencies where caGs) .,> I or <s- . 1.
range over which this result is valid - a small 7 is desirable, as the deteriorat;,,n in the loop shape due to '_. is bounded by
we would expect. Further, if we consider those frequencies where a function of - (or equivalently f) only. Noting mat -Y "smll'
,-(G5) >' ./-i - 1, we have the following asymptotic result: (implying 'large') indicates a minimal deterioration in the loop

Curollary 5.2 Following the notation of Theorem 5.1, if shape, it is confirn:ed that e indicates the compatibility between
"U Gsj ,, V' 2 - 1, then the specified loop shape and closed-loop stability req'iirem, zts

Remark 5.6 Note that in Theorem 5.3 it is not necessary to
1 assume that GS is a square transfer function matlix Horace.

, 9 _ Ihigh frequency loop shape properties can be guaranted for a
plant of any dimension.

Proof: This follows immediately from equation (5.3), by noting We have shown in this section that the values of , 'alter
that '.Gsj_-') " - 1 implies that C

2 (Gs(jw)) > 1, and natively f) achieved in the Loop Shaping Design Procedure wil'
;dso that ")1/ 51 .')('y

" - 1)i/ 2  -79(Gs(j-)). 0 directly affect the singular values of the H_, controller K_, Al
though the precise relationship between -y and the shaping func-
tions W, and WV2 is not known, we have shown that a large -

5.1.2 Iigh Frequency Behaviour value indicates incompatibility between the selected loop shape

At hg frequency (in particular ,d (c,_ )) the deterio- and the closed-loop stability reqiurements. Such an incompat-
ibility can lead to extensive deterioration in the specified loop

ration in pnat ouput loop shape can be obtained by comparing shape. Under such circumstances, the designer would be re
aiG1VWK ,V2 ) with ((W 2GWj). Note that, analogously to
(5 i) and (5.2) we have quired to 'relax' the original loop shape spec'fi'acon, u110, i

more compatible loop Ohsp in achieved.

(75 GK) = , GWIK_,W2 ) < 5(W 2GWi )d(K-)c(W). (5.4) 5.2 Using -y/( as a Design Indicator
In Section 5.1 we evaluated bounds on the 1-a1a1 :,,p

Siiiarii)y. the correspondi, g deterioration in plant input shape deterioration at low and high loop gains, for a g:.-
loop shape is obtained by comparing V(WK W 2 G) with f -

'), and a specified loop shape. In this section we take a o,
f7' ,'-:1Vl whore trary approach: Given any stabilizing controller. K. t;,re exists

a frequency ,,, such that,KG, - a, II K. W,'G) < #(1 "2GWr,)((K, )c(Wi). (5.5)

Hence ii: axli case, a(K,,o) is required to obtain a bound on \
the deterioration in the loop shape at high frequency. In an
analogous mariner to Theorem 5.1, we now show that ar(K_,) is and we evaluate the minimum deterioratio,.i ii loop shiapet that
explicitly bounded by functions of r, and U(Gs), the mnoaimum can be expected, if any, for this y, and examine the- ,ffect oi -
singular value of the shaped plant. on robust stability at this frequeny. We suri , , ,, ., ,'

Theorem 5.3 Any controller, Ke, satisfying in the following theorem

Theorem 5.7 Let -br !he optiyr.a" ,;," "
GK, for the normalized LCF robu.t ltabilization ,,,.i, t

(2.5). Then, for any stabilizing centr,,l, ,. ..
frequency. '.o .such that

where (N. A,, o a normalized LCF of Gs, also sattsfies

v... il + c(Gs(_:,))) + r9d(Gs(j, - I

and hence
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(i) There ez:sts a perturbed system Y((I - KG)-') 1 + Wi'(N,)c( ) (5.14)

G A TV , + '(,S, + AN) Wp.) 1 (a(I - K G)- 1K ) < 1 + -7r(k I,)c(W 2 ) (5.15)

where (N,,Mo) is a normalized LCF of Gs = W 2GW, and

with c(s) denotes the condition number.

[-,N, AMlI, "n (5.9) Remark 5.10 Note that because (Al,, k,) is a normalized LCF

which destablize the qystern. Further, of Gs we have that '(N) < 1 and a'(M,) < 1 for all frequen-
ii) > 1) / 2, then cies. Noting also 'hat y has a finite value (typically 1 <7<5in

- practice), and that the shaping Zunctions are selected by the

designer, then it can be seen that. by (5.10) - (5.15), all of

_' K,(o i < - 1(1 + 1,"(Gs(jw.o))) + y ,.o'Gs(jwo)) the closed-loop objectives are guaranteed to have bounded mag-
- 1)a 2(Gs(jw)) - 1 nitude. We say that in this case the objectives are well be-

haved. For the simple case of W = I and W = I it can

and be readily seen that in (5.10) - (5.13), IV. (= AF) and M,

it) if < (t2 1)", then (= M) provide frequency weighting. The frequency shapes
are 'natural' for many problems: for example at frequencies

where (M) is small (indicating a nominal plant pole near the
-,,2 -I- a(Gs(jw')) imaginary axis), then '((I - GK) - ') and F(K(I- GK)- ' )

-- (1 - "(Gs(i))) + 7, s ) are small. So the Iehaviour of the standard closed-loop transfer
functions (I- GK)-', K(I - GK)- ', K(I- GK)-IG, and

Remark 5.8 Theorem 5.7 shows that -y/f is a design indicator (I - GK)-1 G is compatible with sensible closed-loop design.

for the entire frequency range: Firstly, if the coprime factor ro- 5.4 Bounds on the Normalized Coprime Factors

bust stability is poor (that is c << 1 or - > 1) at a frequency We now state a technical result which demonstrates that
'here N, and AI, are of comparable size, then (,* shows that F(N ,) and '(M,) are related to the nominal plant G and the

only a smalh relative perturbation on either N, or M, is per- shaping functions W, and 1V2 .
rntted. However, if M, > N,, then the notional destabilizing Lemma 5.11 Let the shaped plant, G = W 2 GtV1 , have a
perturbation could correspond to a very large relative pertur e h
bation in N , implying that robust stability properties may in normalized LCF given by (N,, At,). Then

fact be acceptable despite y > 1. However, in this case, we 1/2

have "(Gs) < 1 and part (iii) of Theorem 5.7 applies, show- - = ( -(W 2GW) (5.16)
ing that the loop gain is necessarily and undesirably increased. 1 + 37'(W 2 GWi)J
Conversely, if ,l', < N,, then the notional destabilizing pertur- and

bation could correspond to a very large relative perturbation in 1/2

Sl,, again implying that robust stability properties may in fact . ( 1(5)
be acceptable despite -y > 1. However, in this case. we have-1 +ail (W2GW)

f Gs) > 1 and part (ii) of Theorem 5.7 applies, showing that
.he loop gawn is necessarily and undesirably decreased. Remark 5.12 The value of this Lemma is that the bounds

In the next section we examine the closed-loop behaviour on the closed-loop objectives in Theorem 5.9 can be rewritten
achieved using the Loop Shaping Design Procedure, and confirm in terms of -, G, W1, and W only. It can now be clearly

that the loop shaping approach gives guarantees on particular seen how the loop shaping influences the closed-loop properties.

d:ioeed-loop objectives. Noting that if q.(W 2GW,) > I then 5(k.M) . 1/aq_(W 2 GW,),
F(.K,) 1 and that if f'(W2GW) < 1 then F'(,) -,- 1.
"r(1V,) "(W 2 GW,), then the bounds in Thorem 5.9 can be

5.3 Behaviour of Standard Closed-Loop Objectives re-evaluated to show the effects of W, and W2 on closed-loop

In Section 3 we stated that a feature of the classical loop behaviour in frequency regions of high and low loop gain.

shaoing design approach is that it is possible, by open-loop sin-
gular value shaping, to ensure that a number of standard closed-
loop design objectives are 'well behaved'. The following result

demonstrates that this is also the case for the Loop Shaping In this paper we have incorporated the normalized LCF

Design Procedure outlined in Section 4.1: robust stabilization problem into a loop shaping based design

Theorem 5.9 Let G be the nominal plant and let K -technique. This enables both performance and robust ;tability

Theore K .9 TV be the ae controll potand the Loop objectives to be traded-off, and preserves the exact solution as-
Sha Kn ,V'.g be the associated conroller obtained from t sociated with this particular H,, ptoblem. The design method is
Shapm9g Design Procedure of Section 4.1. Then straightforward and systematic, incorporating only the simpler

( K, I - GK; - ') < F(k,)M5(W )a(W 2 ) (5.10) aspects of 'classical' loop shaping. The normalized LCF robust
stabilization problem has been shown to be particularily well

SI - GKr -1  < -i(,)c(,V 2 ) (5.i1) suited for this approach because the Ho. controller synthesized

71 K, I - GK) - G) < 7,a(NV,)c(14Wi) (5.12) causes only a limited deterioration of the specified loop shape.

I a;?__V, ) Coprime factor model reduction techniques can be simply incor-
rr,, I - GK) - ' - (5.13) porated into this frattiw,,rk As a fita comment, it should be

and a-( W, W)j2  
noted that the Loop Slapi g L)esNin Pror,dure , restricted to a
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p1izrticiuha set of H. objectives. However, it can be shown that
the design technique yields simple and effective controllers. (See
[101 and (Ii.)
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Abstract
The problem of maintaining the H_. norm of a standard closed loop below a W
prespecified tolerance level whilst ma.ximizing an entropy integral (at a point

in the right half plane) is posed and solved by way of the equivalent error
system distance problem. All error systems with infinity norm below the
tolerance level are parametrized as the linear fractional map of an aln pass
matrix and an arbitrary stable contraction. We derive the maximum entropy
choice for the contraction and a value for the maximum entropy. For the
maximum entropy at infinity, it is proved that the arbitrary contraction must
b'e set to zero (the 'central' solution); the maximum entropy in this case is
ain explicit formula in terms of the realization of the error system. Some
motivational remarks are made and links between entropy, H 2 norms and H2

optimal control are giv-n.

Notation Figure 1. The standard H_0 configuration.

The open right half plane. The closed loop transfer function matrix G from w to z is

R (Prefix) Real-rational- given by the linear fractional map

R H, Hardy space of real-rational transfer function
matrices analytic and square-integrable on G = F(P, K)
vertical lines in the right-half plane.

ri,_ Hardy space of real-rational transfer function
matrices analytic and bounded in
the right half plane. of the appropriately partitioned standard plant P and the con-

G" G(-3)', the parahermitian conjugate. troller K. The optimal H_ control problem is to find a stabi-

c,(G) A= (G'G), the i" singular value of G. lizing controller Ko., which minimizes the infinity-norm of this

S ,  -norm. transfer function i.e., K., satisfies

sup~a_(~iwH,-nonor.
.G = sup a ,,(G(j~)), H0 -norm. inf{iI.'(P,K)[r : K stabilizes P} :=-y.p,

X Ric-C - " is the stabilizing solution of the Riccati equation = [IT(P, K. )I=. (2)

XA - A'X - XBBX+C'C = 0

)HE Denotes maximum entropy. Motivated by the belief that optimal H_ control is not always
Denotes H_ optimal. appropriate we consider here the suboptimal problem obtained

I )s, Denotes H2 optimal. by relaxing the infimum in (2) to the bound
(.= D + csI - A)-'B, statepace realization.

A square transfer function matrix G(s) is said to be all pass if IIY(P, K)jI < "' (3)

G'(jW)G(I) = 1, Via. where y > '.e,. In general, there is a class of controllers which

The Laplace transform variable a will be suppressed to keep typography sim- satisfy this bound; such nonuniqueness is dealt with in this paper

Pl1 Dependence of transfer functions on e is understood. by specifying that the entropy of the closed loop transfer function
must be maximized.

I. Introduction The entropy is defined as follows. For any transfer function

This paper is concerned with suboptimal H_ control with matrix G which satisfies [JG[[_ < - the entropy of G at a point
a maximum entropy criterion. The theory of optimal H.* con- .s E C+ is defined by
trol has received much attention over recent years; for full de- I(G s,
tails the interested reader is referred to Francis [6] and the refer-
ences therein. Figure I illustrates the usual configuration, where .- / In[det(I - -2 G'(j')G(jw))[ i _ d .
the 'standard plant' P, consisting of the actual plant, suitable 4tr *-
Weighting functions and interconnections, maps exogenous in- (4)
puts w and control inputs u to controlled outputs z and men- This definition is equivalent to that of Arov and Krein [1], 12)
sured outputs y. As is usual in H_* control problems, we assume
that except for an extra Re so term to ensure non-zero entropy when

s. - oo. It is easily seen that the entropy is well-defined (since

uGlie 5 -y implies 0 < I - -G'(jw)G(jw) <_ I ) and non-
P (PP2' I A i 2  positive; that l(G; -y; s.) = 0 if and only if G = 0; and that the
P (pp:: pp:: )entropy of G is invariant under unitary scaling of G

l n n _ C ' 1 1 ' O O C t: 9 0 II



Our maxnjum entropy 11- control ,rohlem is then: As G inow. Lway frorn this worst case towards G 0

Find. ,,i ,f all -onty,4lrrs K which .,tahe:r P and satfy the entropy Ic.olies fititr and decreaseis in init, inIc unitil at
(C ,- 0 the 'n troly e'quals zero. Maximizing the entropy at

IFp K)H . _ (5) any particular -y is an effective way of driving G away from the

the K which mazimizes the entropy IrG; -y s,,) of the closed loop G' (jw)G(w) = 9-11, Vw, case towards the more desirable G = 0
transfer function matrtz G = F(P, K) at a point s. E C+ . case. Of course, our standard plant must be stabilized as well.

Maximum entropy has been studied in a wide variety of Furthermore, if we rewrite the entropy as

contexts; its applications to extension problems (Arov and Krein
.1i, [21) and to contractive interpolants (Dym and Gohberg [4), I(G; s0) = -s.nrill -- 'cr (G(j,))[ Re d,
5[) are pertinent here - we use an adaptation of the method 27r s,. 1 j-

of 12[. The use of maximum entropy in H_, control has been (9!

considered by Limebeer and Hung [9[ for the 'one-block case' it is clear that all the singular values a,(G of G are i0cluded,
where both P,, and Pi are square. N , _h assumptions &-e un!ike the infinity norm whi-h depends only oti the largest s>-

made here, the analysis is valid for 'one-,' 'two-,' and 'four- gular value.

block' problems. The term [(Re s,)/Ils - .wl1 in the entropy integral is a

As with optimal H_ problems (see [6]) we approach the frequency weighting with a shape dependent on the position cf
problem by reducing our original problem to a 'distance prob- the point s0 in the right half plane. In order to obtain real-
lem' . To do this, we use the parametrization of all stabilizing rational controllers so should he a real numbe-; allowing s ;,.-
controllers of Youla et al. [12] to reduce (5) to the equivalent makes the frequency weighting equal to unity for all frequencies,

model-matching problem of finding Q E "ZH_. such that a notable special case we will return to later.

[[T, + T, , II -- -y (6) An interesting link with the H, norm is provided by the
following lemma.

and then exploit the unitary invariance of the H_ norm to re-

duce (6) to the distance problem Lemma 2.1. For any G which satisfies IGIi < -y we have

(R' Pi ) 11 -t, QE1H( (i)-G ) > G(Res°)/(s +s)J

2i,,, + < _ (ii) {-I(G;-y;o)} ' /' 2 [IG[i, if G is strictly proper

where R = (-, R.: ) is antistable and is known in terms of and equality in both cases is achieved when - oc

the standard plant P. Proof: Appendix.

If we define the error system E by Part (i) of this lemma shows us that the square root of the
( Rmagnitude of the entropy at s0 is an upper bound on a frequency

:= (8) weighted H, norm, whilst part (ii) is a similar result for the en
we know that I(G; s; s,,) = I(E; 3'; s0 ) because entropy is unitar- tropy at infinity and the usual (unweighted) H, norm, if it exists

ily inariant, therefore the closed loop transfer function G and In both (i) and (ii), relaxing the H_-,, norm constraint entirely
the error system E have the same entropy, allowing us to solve by allowing -y - oo gives equality. In other words, the frequency

our original closed loop problem (5) by solving the following error weighted (respectively unweighted) H, norm minimization prob-

system distance problem: lem is exactly the maximum entropy at s 0 (resp. at co) prob-
lem, with -y - oo. Thus the imposition of the naximUMm ILropy

Find the error system E as defined in equation (8) which satisfies constraint allows us to use - to trade off between H_, optimaa
E - and mazimizes I(E;-Y;s0 ). (-t - -t,,) and H. optimal (y' -. m) solutions.

The arrangement of the paper is as follows. In the next III. Derivation of the maximum
section we briefly motivate H, control and maximum entropy. entropy solution
Section III contains the main results. By parametrizing all solu-
tions of the error system distance problem we are able to derive Iu this section we solve the following maximum entropy di.i-
the unique maximum entropy solution together with a value for tance problem, as posed earlier.

..-trop, This is firstLy done for L"*L genCral case of entropy at bet s, E C, and 2
any s, E C. and then for the important special case of s. - 00. R=,,_,"' ( R, R, (10)
This latter case yields particularly explicit and appealing results. P21 R,1  P2 /
Proofs of certain lemmas have been relegated to the appendix
whenever the inclusion of the proof in the main body of the text be given, where
would be int.asive.

II. Motivation R' C EZH_, m, >p, p,>_nm.

Here we briefly state some relevant background details. Re- Define the error system E by
call that we want our controller to stabilize P and keep the
infinity-norm of the closed loop _F(P, K) below a level y (where R R

> Y,,). Such control problems lead to a class of possible con- E (: ( i E2H, ii
trollers and so there is scope for another criterion. Our approach
is to use the controller which maximizes the closed loop entropy. and let
The closed loop entropy (4) is a useful measure of how close
G = 'P,K) is to the worst case of G'(jw)G(jw) = 9!I Vw, , if{lIE!, : 7 H,, ,
where the bound is achieved at every frequency, for in this case Then for -t > -,,, find Q E RCH_ such that JE ., : - .
the entropy is -c. entropy I(E;-r; s,,) is maxrmized
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We have seen that this problem is equivalent to finding a Lemma 3.2. Suppose J = (3' jn ) is all pass, 1 E 7ZH_ ,
stabilizing controller K which keeps I.F(P, K)11- _< - and max- 1I1~oo _5 1 and det(I - J,, PI) is a unit in 7?H . Then
imizes the closed loop entropy. I(TY (J, P); Y; S ) = 7' I( T; 1; S ) -. 3"I(J ; 1; SO

Solution proceeds by firstly parametrizing all possible E - '(Re s, )ldei(I - J,,(s.)%P(s,))1. (16)
which satisfy the bound [IEI - y. Ball and Cohen [3] pro-
vide such a parametrization in terms of a linear fractional map
of a J-unitary matrix and an arbitrary, stable contraction t Proof. Throughout this proof take s = jW. The assumption
(that is, '1' E RXH,, and 14II_ : 1), but it is more convenient that det(I - J,22i) is a unit in RH., together with the all pass
to use the parametrization of Glover and Doyle [8] in terms of
the linear fractional map of an all pass matrix and an arbitrary,
stable contraction ,$. By adapting tic method of [2] we are able [7.F(J ) [.Tr(J, I)] < , (17)
to derive the unique choice of 1 which maxirnizes the entropy
and a value for the maximum entropy, for both the general case so the entropy (7Y(J, V); 7; s.) is well defined. Using
of sj E C , and when s. - J (jw )J M = 1 (18)

III.1 The general case

Here we solve the maximum entropy distance problem for in block-partitioned form, it is straightforward to show that

arbitrary s. E C+ and E proper, but not necessarily strictly I- - [-7 (,)'"(J, 41), [-)Y(J, IF)]
proper. The class of error systems E over which the entropy -J [I-J 'v-'[I-.'P][I-J" v - ,J , .(19)

must be maximized is parametrized in the following lemma. I [

Lemma 3.1. [8[ All solutions From this, and the fact that for any square real-rational transfer

function matrix G

E 'R R lnldet(G'G) = lnldet(G)l + lnldet(G )I = 2 lnidet(G)j, (20)E = ,-,! ( R , R

, R2 , R,, +Q) we obtain

with lnldet(I - -' [1(J, T)]* [-y (J, ,T)])I

R', Q E RH-, m, > p, p, > in2 , = lnIdet(I - 'IP)l + lnldet(J;,J,,) - 2 Inidet(I - J,41)l.

to the distance problem j E[[E j _ r where 7 > "y,, are given by: 
(21)

Substituting this into the definition of I(-y-(J, 41); -1; s, ) and us-
E = 3Y(R.. + Q.,'), (13) ing the (1,1) block of (18) to write 3, 3 2 , =I-JJ,,, Vs =jw,

it follows that

where '"I-P2 P7 i(-(j,');7;So)=y'I(';l;s,)+7yi(J,,;1;So)
P3__ "_., ( 0 o0 ,,.< r 1'

-7.1 0 4J E H - -1- lnjdet(I - J2 1(ju)q(jw) L so [,

is., - Mw
Also, (22)

R . Q.. By assumption, det(I - J,,%P) is a unit in 7ZH_ , which per-
mits the use of Poisson's Integral Theorem (Rudin [11], p343) to

'"2 Pi evaluate the integral in (22), giving

: ( [R. + Q..1, [Re°+ Q,.,, (14) I(T/Y(J, I);;s)=7'I(';1;s) + -'I(J,,;1;so)

.,,a [Re. + Q.. , [R:: + Q.j,, -7 (Re s,)lnldet(I - J,,(so)'(s))j (23)
ml- P2 P -ro '"

p,-'I (7-'R,, 7R, 0 as claimed. LAA

: 2 - 7 - ' R, 1 -'(RS, + Q,2) 12 3 + Q, Q24  We are now in a position to derive the unique, stable, con-

"-Ft l, 1  R-2 + Q 2, R-33 + Q33 Q, tractive 4 in the parametrizatioa of all error systems which max-

o2' 0 Q,2 Q,, Q., imizes the entropy I(E;y;s.o).

(15) Theorem 3.3. Consider the class of error systems E which sat-
isfy the condition [JEJJ,. _ -y as parametrized in Lemma 3.1 by

Further, R',,Q., E kH., Re a+Q.. isaU pass, Q.,,(o)=O o
andllQ., < . E = -Y(R.. +Q.., 0 )), *-P E .H , I"[[j- 5<1. (24)

State space realizations of RP and Q,, are available in [8],

in terms of the realization of (R1i a"2 ) and the solutions to two Then the entropy I(E; -; s° ) attains its maximum over this class
algebraic Riccati eq.tions. In tls section we will not need these of E with the unique choice
realizations. • = q:( o).(25)

The next lemma relates the entro -y of the linear fractional

map of an all pass matrix J and an arbitrary stable contraction
IV to the entropy of T itself.
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Proof: Here we adapt the proof in 12] to the present setting. Proof: Equation (31) follows immediately from equation (30)

1 ,.mnni 3 gYi ves a!! . -r systems ;" the form (24), where R** + on setting 4 0. To show (32), recall that R.. + Q.. is all

,.e., ib , pass. Aibo, pass i.e.,

(t - (R.. + Q.)'(R,. + Q..) = I, Vs =iw. (33)

The (1,1) block of this gives, Vs = jw,

which is a unit in 1ZH_ because both Q., and 4, are in RH** I - [Re. + Q..]i [R.o + Q..°1,
with 11Q,, 1 < I and 114,]_< 1 (Lemma 3.1). Hence we may
apply Lemma 3.2 to E to obtain = [Re. + Q..J 1 [Re. i . J2 1 (34)

so that, along the imaginary axis,
I(E:y7; s°) =-v'2I(,; 1; So) +y"I([R., + Q1, ; 1;so )

-- '(Re s,)lnldet(I - Q4 (s0 )4,(s,))l. (25) /let(I -[R°° + Q**] 1 [R..+ Q**],

i = 2 lndet[R.. + Q°,,, I (35)
f Q ) = 0 then = 2 lnldet(R;,)j + 2 lnjdet(Q,,), (36)

I(E; y: s, ) 'I($; 1; s, ) + - 2I([Ro° + ] 1; s.) (26) where (36) follows from (35) on examination of the strii tur cf

which is clearly maximized by the unique choice t = 0 = R. ., in Lemma3.1.

Q:,(s.), and there is nothing more to prove. So, henceforth Substituting (36) into the defnition of entropy, we sce tLat

in this proof assume Q,, (So) # 0.

Define the constant matrix H ; H "") by 7
2

7([R°° +Q.[,,;s) r
i[ Re s, P

-Q , (s,) ( I q ,(s.)Q ,,(s.))iIS + ln deit(Q ,,(j-))} I Re s,

H = I- Q,,(S.)Q:,(so))' 2  
Q,4 (So)

(27) Since 1pi and Q,, are units in IZH. [81, Pooson's iriteg:aj

where ( - )] denotes Hermitian square root. It is easy to verify theorem may be used to evaluate (37) as
that H is unitary and that

- H~2,t(s)) = det( - Q,,(s,)4,(s)) -7 I([R°. + Q.],; 1;s.) = 7
2 (Re s.) (n1idet(R, (s.

+Injdet(Q,2 (so))) . (38)
which is a unit in )-H-.

The second term in (31) is

Let us map the unit ball in RHL onto itself by the linear

fractional map -2 I(Q,(s.); 1; s, )

F(H, t), t, E RHO, ]4,]l,, <1. (28) = f In2 Idet(I-Q,,(s),Q(s))l [ ie 2 d.,

Note that this maps 4 = Q.,(s,) onto 4 = 0. 723___n det( I-- lndetI -Q,,(s, Q:,(so))l.--(R+e m

I.-rma 3.2 is applicable:

and this with (38) gives (32). A,"1
I(4,; Is0) =1(4; 1; So) + I(Q:. (S;; se) 111.2 Entropy at infinity

- (Re s, )Injdet(j - Q,,(so)4(s,))j. (29) We turn our attention in this section to the importarit sp,?-

cial case which occurs when s, - oo along the real axis. The
T1se this together with (25) to relate the entropy of E to the entropy at infinity of G, (JIGIjO < -) is then
entropy of 4,: -

I(E lnldet(I - 'G(j)G(.-)) 1 a. (39)
-- I([R. + Q..,; 1s .S) - 72 I(Q:, (s); 1; s), (30) which is finite if G is strictly proper. For our problem, where we

maximize the entropy of the error system E, this means that
from which it is immediate that I(E; ; a0) is maximized by the the maximum entropy at infinity is finite if Em E i- ,:rictly
unique choice 4 = 0. But 4, = 0 ,-, Q,(s,) from above, proper; this occurs when R in the distance problem -,31 is
and the theorem is proved. ZA strictly proper, which in turn occurs when P,, cx - . Isthe

Denote maximum entropy quantities by ( . . An expres- standard configuration of figure 1. This correspond's ti. ,", i Z ,.
sion for the maximum entropy follows with ease from the above feedthrough terms from the exogenous inputE w .o -..

proof. outputs Z.

Corollary 3.4. The results for the maximum entropy problem at it fr.,tv" ai
particularly simple The maximum entropy solw,,. -d

1(Em E; : s.) by setting the arbitrary stable contraction 4, L,., ..

choosing the 'central solution' out of the set of poss,b!t F and
=2I([R.. + Q.,],,; 1; s,) - 7'1(Q:. (s,); 1; a,) (31) an explicit formula for the maximum entropy is der-oi rins

Y'(Re s){lnjdet(R ,(a,))! + lnjdet(Q,,(s,))j of the state space realizations inherent in thf s,,..

- (I/2)lnjdet(I - Q,(s.)Q,,(s))}. (32) distance problem of Lemma 3.1; these state -l .c rc, . ii.
are stated in th, Tn'eV

+ ]pmm;
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Lemma 3.5. (81 Consider the distance problem of Lemma 3.1 To obtain the value of the maximum entropy, we take the
in the case R(oc) = 0. Suppose R has a realization limit as s0 - c along the real axis of the result of corollary 3.4.

that is,
2.. "l'1 P2

2n1 (A B, B2  I(EM E;
3" ; ) lim (y'so{Inldet(R;+(so)) +lnldet(Q.2 (so))!

R =,_ , C, 0 0 . (40) so=

21 C2  0 0 - (1/2)lnldet(I - Q:,(so)Q,,(s.))j}). (49

Then R., + Q., in the parametrization of all solutions to the Consider a typical term from (49):
distance problem JIEl_ < -y in Lemma 3.1 has a realization

lim (s, In det(I + C(SoI - A)-1 s)).
R.. + Q.. (41) 0

(We have dropped the modulus sign because s, is real here).
where Now,

= (A 0) C(So-A)- 8= Cfs- +O(s;')

0 .so by Lemma Al (of the appendix) we have(<-'/'B, "-J'B 2  - 3- /'XC; 0_0 f"'Z-'YB, --:-':' 2C 7-'' 2 Z-C s o In det(I + C(s.I - A)-'B) = s. (Trace[CBs'] + O(s )).

CZ _ / 1C~3C 2 X Therefore, on taking limits as s, -- 0,
( = -- '/B Y "-/B Z"

0 lim (s. In det(I + C(soI- -)) = Trace[CB]. (St0
0): 0 0 1K 0 0 Apply this to the terms in (49) using

Further,

X Ric A-*C;C' (42) R ,(s0 ) =I+_-'B (soI+ A')-YBI (51)
X-B, B, B B; -A and Q,*(S) = I,&)-'Z-- YB, (52)

Y Ric( A - BB) (43)Y:Ri -CC' - C; C, -A*"

Z =- XY -I (44) from (41) to get

A = -A" -- y-'Z-'YBB; -- r- 2 C:C,X. (45)

Applying the results of the previous section using this realization, I(EM E; ; oo) = Trace[B, YB ] - Trace[B; Z- YB, ] (53)
and taking s. -. m gives us the following important theorem.

Theorem 3.6. The entropy at infinity, I(E; -f; o), is maximized
over the class of error systems E in the distance problem of as required, where the third term in (49) is zero in the limit
Lemma 3.1 by the unique choice 1D = 0. because Q, is strictly proper.

If R(m) = 0, then the maximum entropy error system is
simply The alternative expression (48) follows in an entirely similar

fashion; one notes that I(EMr E; -y; oo) = I(E ; -t; ;c) leading
EE = r[R.. + Q..]..

A 0 B, B,
- A 0 7-1 Z-'YB2 (46) I(EME;7;oo) = lim (_2 s. {Inldet(R;,(so))I+lIndet(Q,,(s))= c, 0 0 0

C1 -'C,2  0 o o - (1/2)lnjdet(I - Q., (so)Q,(s))}) (54)

and the maximum entropy is

which gives (48) in the limit. AA
0(0tr-ro) = Trace(B;YB1 ] - Trace[B;Z"YB2 ] (47)

= Trace[C, XC, - Trace[C2,XZ- C;]. (48) Remark 3.7. Notice that the entropy formulae (47) and (48)

depend only on the state space realization of R and the solutions
Proof: From theorem 3.3 the maximum entropy error system X and Y to the two Riccati equations (42) and (43) which are
is characterized by the unique choice 0 = Q:,(s0 ). Letting s. - inherent in the solution to the distance problem. Calculation
oo along the real axis gives the maximum entropy at infinity of the maximum entropy therefore imposes negligible computa-
choice as 4 = Q:, (oo) = 0, because Q.. is strictly proper from tional problems. Furthermore, the maximum entropy error sys-
1,emma 3.1. For details of the limiting argument see [14]. That tem (46), being the linear fractional map of t = 0, is simply
the maximum entropy error system has a realization (46) follows -t times the p, by m, (1,1) block of R.. + Q.., which is also
easily by setting 0 = 0 in (13) and using Lemma 3.5. available from the solution to the distance problem with no extra

comtnti at ion,
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Remark 3.8. Recall from Lemma 2.1 that {-I(G;oo; 0 0 )1'1' [7] F R Gantroacher, The theory of matrices. Chelsea Publishing Co., Nf
G;o2 to- strictly proper G. Thus if we let -y oc, in our maxi- York, Vol. 1, 1959,

irim - tropy so!,, on we should obtain exactly the H, optimal [8 K. Glover and J C Doyle, ,snd~r preparation.
so~uuun. We show here that this is indeed the case. [9] D J.N. Liinebeer and Y.S Hung, "An analysis Of the pole-zero canc'

fl% using the results of WXirirncr :13] it may be shown that lations in H_ optimal control problems of the first kind." SIAM
th.te positive semidefinite matrices -X and -Y are are monoton- Control and Optimi:ation, 25, No. 6, 1457-1493, 1987.
ically decreasing as -) increases, and that -Z is monotonically [10] R.M. Redheffer, "On a certain linear fractional transformation."
increasing as -y increases. Taking -7 - c we obtain Z, - -1,.. Mathi. and Physics, 39, 269-286, 1960.

[11] W. Rudin, Real and complez analysts. Mc. Graw-RiU Internatioria

X, Ri A' 0 (55) edition, 3rd. edition, 1986.
13 R B, (,8 - 13,B; -A) () [12] A.D.C. Youla, H.A. Jabr and 3.3 lBongiori..,. Vnd-r %V, ne-htcqi

design of optimal controllers. Part 11 - the multivariable case," fEE.'

and Y _,., Ric ( A 0.)~ (56) Trans. Auto. Contlrol, AC-21, No. 3, 319-338. 1976.
k C 1 - C2C -A [13] B.K. Win-mer, "Monotonicity of maximal solutions of egueb: aic RPiccat

equations." Systems and Constrol Letters, 5, 317-319b, 1985.
j with an obvious notation) which identifies the matrices -X [14 K.Goe n .Msaa"eiaio ftenausmetoy1

ad-, as the controllability and observability gramians of controller and a state-apace formula for its entropy." submitted,
R(_5)~, respectively.

Using this tact, a simple calculation shows that Appendix

I(EE:C )= raeB ,Bi The following technical lemma is needed.

- Trace'B; (Z,- -. )-'Y,- - B,) (57) Lemma Al Let M be a square matrix and o!>0. Then
=-Trace [B, , B, 1'-Y,.. -IB, B2))j (i) In det(I-cM) = -e Trace[M] + 0(c)'

=(58) (ii) -In det(I- e/M"NiV) ? e TraceTM*MI.

andtht ~ =~.Proof. Part i). Use the Faddeev formula. (GantzrerC i7j.and tht ( Mp8 8) to obtain
lt is well-known that the Q E 7ZH_, which mtinimizes det(I-EM) c Trace[MI + OkO')

(Ri R1 , (59[ and expand the logarithm of this as a power series-
P, K , Ri,,~ + )1 (9 Part (ii). Using a well-known inequality

is (~= =0 (the H, optimal solution) and in that ca-se -In det(I - c2M*M) = In (I - f' (M))

ilEH2 , , = 11R11,.- Comparing this with (58) shows that we havea, MI(Em r I ;,-,c) =-IEH, 11,, illustrating the equivalence between Z (M
the maximum entropy distance problem at -f, a -v o and the
H, optimal distance problem. c" Trace[M* MI. A

Note that if -y - 'y 7 ,then EM F -s E0 p1, the H. optimal We may now proceed with the proof of Lemma 2.1
io'ution. It is easy to prove that I(Ew E; -Y; -0)I is monotonically Proof of Lemma 2. 1: Part (i). By Lemma Al ve can write
decreasing as -y increases from its optimal value; thus we have 1I-
shown. how - can be used to move from H_, optimal to H, -I(G;-y;.s.) = ] j(Tracc[G*(jw)G(jw)])
optimal via the maximum entropy solutions for -y, < y < 00. 

- es d
Acknowledgement l i. -)-I '

We would like to thank D.J.N. Limebeer for providing an = 2 1 ITracefG - Re's, 1
English translation of the Russian paper [21. 2J,, ( '(sv + )W)

References Re so L

[lj D.Z. Arov and M.G. Krein, "Problem of search of the minimum entropy Therefore,
in indetermiunate extension problems." Functional Analysis and its Ap-
pllcations, 15, 123-126, 1981. -I(G; -y; .) = (IG(.s)(Re So.)I(. + ,s) 11 + 0(--') (*

[21 D.Z. Arov and M.G. Krein, "On the evaluation of entropy functionals and Noting that the 0("ry2) terms are nonnegativc we hal
their miunima in generalized extension problems." (In Russian) Acla. Sci.
Math., 45, 33-SO, 1983. "y( ; rss. G(s)(Rc .s, )1(s. -t s) i

[3] 1A& Ball and N. Coben, "Sensitivity minimization in H_ norm. Parame- whilst
trisation of all suboptimal solutions." Int. J. Control, 46, No. 3, 785- -I(G; cx..; .s,) = IG(s)(Re s )/(s,
816, 1987. follows by taking -t - 00 in(,)

[4) H. Dym and 1. Gobberg, "A maximum entropy principle for contractive
interpolant." J. Functonal Analysis, 65, 81-125, 1986. Part (ii) Firstly note that the integrxads im s.. ar,

[5] H. Dym and 1. Gohberg, "A new class of contractive interpolants and monotonically increasing with so and continuie,.s, ar. A, - by
ma-urmum entropy principles." Operator Theory Advances and Applica. domfinated convergence both sides of (*) tend to a li1 F' 5,) - ,

tions, Birkhauser Verlaq, Basel, to appear. 00. Each side is finite because IG11 < '- and G Oby
[61 B.A Francis, A Course in H_, control theory Lerture Notes in Control assumption. The result then follows in a siniflaz v.a t. ( . roof

and information Sciences, Vol. 88, Springer-verlag, 1987. of part (i).

*u.5 Governre'ft ProtI'i' .' U

85


